Answer:
D. 5.6 g/cm^3
Explanation:
On the average seismic velocity increases with increase in depth due higher the pressure and more compaction
sand and shales in the Niger Delta Basin density–velocity relationship is
P = 0.31×V^0.25
A derivation of the original Gardner equation to calculate the average densities for sands and shales in wells.
ρ = α ×V^β
where
ρ = bulk density in g/cm3,
V = P-wave velocity,
α = 0.31 for V (m/s) and 0.23 for V(ft/s) and
β = 0.25.
Such that
ρ = 0.31 ×V^0.25
So the fastest seismic velocity will be in the densest material which is D. 5.6 g/cm3
Answer:
0.0187 M
Explanation:
Step 1: Write the balanced neutralization reaction
NaOH + HCl ⇒ NaCl + H₂O
Step 2: Calculate the reacting moles of HCl
18.7 mL of 0.01500 M HCl react.
0.0187 L × 0.01500 mol/L = 2.81 × 10⁻⁴ mol
Step 3: Calculate the reacting moles of NaOH
The molar ratio of HCl to NaOH is 1:1. The reacting moles of NaOH are 1/1 × 2.81 × 10⁻⁴ mol = 2.81 × 10⁻⁴ mol.
Step 4: Calculate the molarity of NaOH
2.81 × 10⁻⁴ moles are in 15.00 mL of NaOH.
[NaOH] = 2.81 × 10⁻⁴ mol/0.01500 L = 0.0187 M

<u>Volume </u><u>of</u><u> 106.9 mL from the concentrated solution should be taken and diluted to 350 </u><u>mL.</u>
⠀
⠀
<u>Main I'd On Indian Brainly Is - HeartCrush</u>

<u>We can use the </u><u>formula.</u><u> </u>
c1v1 =c2v2
<u>Where c1 is the concentration and v1 is volume of the concentrated </u><u>solution.</u><u> </u>
c2 is the concentration
and v2 is the volume of the diluted solution to be prepared
9.00 M x V1 = 2.75 M x 350 mL
V1 = 106.9 mL
<u>Volume of 106.9 mL from the concentrated solution should be taken and diluted to 350 </u><u>mL</u><u>.</u>
Answer:
d. 54.9 kPa
Explanation:
mmHg and Pa are units of pressure used in chemistry principally in the study of gases. 1mmHg is equal to 133.322Pa. 412mmHg are:
412 mmHg * (133.322Pa / 1mmHg) = 54929 Pa
The prefix K (Kilo) represents one thousand of the determined unit.
54929Pa are:
54929Pa * (1KPa / 1000Pa) = 54.9kPa
Right answer is:
<h3>d. 54.9 kPa
</h3>
<span>Energy = Mass * heat capacity * temperature change so,
</span>The energy added is 435 J and the temperature has to increase since the energy is added.
<span>435 J = 10.0 g * 0.89 J/gC * temperature change </span>
<span>Temperature change = 48.9 C </span>
<span>The initial temperature is 25.0 C, the final temperature is 25.0 C + 48.9 C = 73.9 C.</span>