Answer:
705.6 m
Explanation:
time, t = 12 sends
initial velocity, u = 0
Acceleration due to gravity, g = - 9.8 m/s^2
As the object is falling freely so the initial velocity is zero.
Let the distance traveled by the body is h in time t = 12 s.
Use second equation of motion

Ad the distance is downwards so take it as negative
So, 
h = 705.6 m
Thus, the distance traveled in 12 second is 705.6 m
Answer:
that would be analyzing data I believe
Answer:
Explanation:
Force = q ( v x B)
- 5.6 x 10⁻⁹ (v x - 1.25 k )
- 3.4x 10⁻⁷i + 7.4 x 10⁻⁷j
Let v = ai+bj +ck
Force = - 5.6 x 10⁻⁹ [(ai+bj +ck) x - 1.25 k )]
= - 5.6 x 10⁻⁹ ( 1.25aj - 1.25bi )
= - 7 a j + 7 b i
( 7bi - 7aj ) x 10⁻⁹
Comparing with given force
7b x 10⁻⁹ b = - 3.4 x 10⁻⁷
b = - 48.57
- 7 a x 10⁻⁹ = 7.4 x 10⁻⁷
a = - 105.7
velocity
= -105.7 i - 48.57 j + ck
b ) Component along k can not be obtained .
c ) v . F = ( -105.7 i - 48.57 j + ck ) . −(3.40×10−7N) ˆı +(7.40×10−7N) ˆȷ
= 105.7 x 3.4 x 10⁻⁷ - 48.57 x 7.4 x 10⁻⁷
= 359.38 x 10⁻⁷ - 359.38 x 10⁻⁷
=0
angle between v and F = 90 degree
The distance covered is 1000 m
Explanation:
The rocket is moving by uniformly accelerated motion, so we can find the distance it covers by using the following suvat equation:

where
s is the distance covered
v is the final velocity
t is the time
a is the acceleration
For the rocket in this problem, we have:
v = 445 m/s is the final velocity
is the acceleration
t = 4.50 s is the time
Substituting, we find the distance covered:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly