Normally, you would call this a saturated solution.<span />
Answer:
Both of the studies said that the mass of the atom is centered in the nucleus, which is positive, and there are electrons (negative particles) orbiting it. So, Rutheford and Nagaoka discovered that the atom can be divisible and it has an empty space.
But, in the model of Nagaoka, the nucleus was huge, and for Rutherford, the nucleus was really small, and the mass was concentrated. By his experiment with the gold sheets, the theory was appropriated. That's why Rutherford is credited with the discovery of the nucleus. Nagaoka was incorrect in his suppositions.
When studying atoms, scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
Explanation:
Scientists can ignore the gravitational force because the gravitational force is considered to be negligible as compared to the other forces due to its smaller value.We all know that the gravitational force is directly proportional to the mass of an object which result in a small force value.When the value of this small force is compared to the value of the electrical force between protons and electrons in atoms the we can say that the electrical force is million times stronger than the gravitational force
Thus we can say that scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
Answer:
The nuclear charge increases from boron to carbon, but there is no additional shielding( that is no additional shells).
Explanation:
First of all, we must know the electron configuration of carbon and boron.
Boron- 1s2 2s2 2p1
Carbon- 1s2 2s2 2p2
Moving from boron to carbon, the effective nuclear charge increases without a corresponding increase in the number of shells. Remember that shielding increases with increase in the number of intervening shells between the outermost electron and the nucleus. Since there isn't an increase in shells, boron experience a lower screening effect.
From
Zeff= Z- S
The Z for carbon is 6 while for boron is 5 even though both have the same number of screening electron S(4 screening electrons). Hence it is expected the Zeff(effective nuclear charge) for boron will be less than that of carbon.