1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
3 years ago
5

How are breathing and cellular respiration related? (15 points if answered)

Chemistry
2 answers:
IgorLugansk [536]3 years ago
7 0

Cellular respiration is not the same thing as breathing, but they are closely related. When you breathe in, you take in the When you breathe in, you take in the oxygen your cells need for cellular respiration. When you breathe out, you get rid of the carbon dioxide that your cells produce during cellular respiration

(hope this helps ^^)

never [62]3 years ago
4 0

Answer:

When you breathe in, you take in the oxygen your cells need for cellular respiration. When you breathe out, you get rid of the carbon dioxide that your cells produce during cellular respiration.

Explanation:

You might be interested in
Two solutions, initially at 24.60 °C, are mixed in a coffee cup calorimeter (Ccal = 15.5 J/°C). When a 100.0 mL volume of 0.100
yulyashka [42]

Answer:

ΔH = -59.6kJ/mol

Explanation:

The reaction that occurs between Ag⁺ and Cl⁻ ions is:

Ag⁺ + Cl⁻ → AgCl(s) + ΔH

To find ΔH we need to obtain moles of reaction and heat released in the reaction because ΔH is defined as heat released per mole of reaction.

<em>Moles of reaction:</em>

Moles of Ag⁺ and Cl⁻ added are:

Ag⁺: 0.100L * (0.100mol / L) = 0.01moles

Cl⁻: 0.100L * (0.200mol / L) 0 0.02 moles

That means limiting reactant is Ag⁺ and moles of reaction are 0.01 moles

<em>Heat released:</em>

To find heat released we must use coffe cup calorimeter equation:

Q = C*m*ΔT

<em>Where C is specific heat of solution (4.18J/g°C), m is the mass of solution (200g because there are 100 + 100mL = 200mL and density of solution is 1g/mL) and ΔT is change in temperature (25.30°C - 24.60°C = 0.70°C).</em>

Replacing:

Q = C*m*ΔT

Q = 4.18J/g°C * 200g * 0.70°C

Q = 585,2J

Is total heat released.

The calorimeter absorbs:

15.5J / °C * 0.7°C = 10.85

Thus, when 0.01 moles reacts, 585.2J + 10.85  = 596.05J are released (Heat released is heat abosrbed by calorimeter + Heat absorbed by water) and ΔH is:

ΔH = 596.05J / 0.01 moles =

ΔH = 59605J / mol =

<h3>ΔH = -59.6kJ/mol</h3>

<em>As heat is released, ΔH < 0.</em>

6 0
3 years ago
If a piece of cadmium with a mass of 37.60 g and a temperature of 100.0 oC is dropped into 25.00 cc of water at 23.0 oC, what wi
zlopas [31]

Answer:

T_{eq}=28.9\°C

Explanation:

Hello!

In this case, since it is observed that hot cadmium is placed in cold water, we can infer that the heat released due to the cooling of cadmium is gained by the water and therefore we can write:

Q_{Cd}+Q_{W}=0

Thus, we insert mass, specific heat and temperatures to obtain:

m_{Cd}C_{Cd}(T_{eq}-T_{Cd})+m_{W}C_{W}(T_{eq}-T_{W})=0

In such a way, since the specific heat of cadmium and water are respectively 0.232 and 4.184 J/(g °C), we can solve for the equilibrium temperature (the final one) as shown below:

T_{eq}=\frac{m_{Cd}C_{Cd}T_{Cd}+m_{W}C_{W}T_{W}}{m_{Cd}C_{Cd}+m_{W}C_{W}}

Now, we plug in to obtain:

T_{eq}=\frac{37.60g*0.232\frac{J}{g\°C}*100.00\°C+25.00g*4.184\frac{J}{g\°C}*23.0\°C}{37.60g*0.232\frac{J}{g\°C}+25.00g*4.184\frac{J}{g\°C}}\\\\T_{eq}=28.9\°C

NOTE: since the density of water is 1g/cc, we infer that 25.00 cc equals 25.00 g.

Best regards!

6 0
3 years ago
Calculate the solubility at 25°C of CuBr in pure water and in a 0.0120M CoBr2 solution. You'll find Ksp data in the ALEKS Data t
iragen [17]

Answer:

S = 7.9 × 10⁻⁵ M

S' = 2.6 × 10⁻⁷ M

Explanation:

To calculate the solubility of CuBr in pure water (S) we will use an ICE Chart. We identify 3 stages (Initial-Change-Equilibrium) and complete each row with the concentration or change in concentration. Let's consider the solution of CuBr.

    CuBr(s) ⇄ Cu⁺(aq) + Br⁻(aq)

I                       0             0

C                     +S           +S

E                       S             S

The solubility product (Ksp) is:

Ksp = 6.27 × 10⁻⁹ = [Cu⁺].[Br⁻] = S²

S = 7.9 × 10⁻⁵ M

<u>Solubility in 0.0120 M CoBr₂ (S')</u>

First, we will consider the ionization of CoBr₂, a strong electrolyte.

CoBr₂(aq) → Co²⁺(aq) + 2 Br⁻(aq)

1 mole of CoBr₂ produces 2 moles of Br⁻. Then, the concentration of Br⁻ will be 2 × 0.0120 M = 0.0240 M.

Then,

    CuBr(s) ⇄ Cu⁺(aq) + Br⁻(aq)

I                       0           0.0240

C                     +S'           +S'

E                       S'            0.0240 + S'

Ksp = 6.27 × 10⁻⁹ = [Cu⁺].[Br⁻] = S' . (0.0240 + S')

In the term (0.0240 + S'), S' is very small so we can neglect it to simplify the calculations.

S' = 2.6 × 10⁻⁷ M

8 0
3 years ago
What is the percent composition of nitrogen in N 2 O
mash [69]

Answer:

63.6%

Explanation:

The given compound is:

     N₂O;

The problem here is to find the percent composition of nitrogen in the compound.

First find the molar mass of the compound:

 Molar mass of N₂O = 2(14) + 16  = 44g/mol

So;

 Percentage composition of Nitrogen  = \frac{2 x 14}{44}  x 100  = 63.6%

5 0
3 years ago
Calculate the standard emf for the following reaction:
krek1111 [17]
In order to solve this, we need to know the standard cell potentials of the half reaction from the given overall reaction.
The half reactions with their standard cell potentials are:
<span>2ClO−3(aq) + 12H+(aq) + 10e- = Cl2(g) + 6H2O(l) 
</span><span>E = +1.47 
</span>
<span>Br(l) + 2e- = 2Br- 
</span><span>E = +1.065
</span>
We solve for the standard emf by subtracting the standard emf of the oxidation from the reducation, so:
1.47 - 1.065 = 0.405 V
4 0
3 years ago
Other questions:
  • The student placed 10 mL of PbCl2 (saturated solution) in the test tube and added a pinch of NaCl. A white precipitate of PbCl2
    12·2 answers
  • What is the answer to this
    13·1 answer
  • What is the maximum number of electrons that can go into each of the following sublevels?. a. 2s- . b. 4s- . c. 4p- . d. 4f- . e
    13·1 answer
  • Description of horizon a
    6·1 answer
  • Use the perfodic table to fill in the table below.
    6·1 answer
  • What’s is CO written?
    8·1 answer
  • What is the correct equilibrium constant expression for equation P2(g)
    14·1 answer
  • Determine the empirical and molecular formulas for a compound that has 10 pa a molar mass of 300 g/mol, and is 60.0% C, 12% H, a
    12·1 answer
  • Help me please???????
    7·1 answer
  • What is the maximum mass of b4c that can be formed from 2.00 moles of boron(iii) oxide?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!