Answer:
15.0 L
Explanation:
To find the volume, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
To calculate the volume, you need to (1) convert grams C₄H₁₀ to moles (via the molar mass), then (2) convert the temperature from Celsius to Kelvin, and then (3) calculate the volume (via the Ideal Gas Law).
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
32 grams C₄H₁₀ 1 moles
------------------------- x ----------------------- = 0.551 moles C₄H₁₀
58.124 grams
P = 728 mmHg R = 62.36 L*mmHg/mol*K
V = ? L T = 45.0 °C + 273.15 = 318.15 K
n = 0.551 moles
PV = nRT
(728 mmHg)V = (0.551 moles)(62.36 L*mmHg/mol*K)(318.15 K)
(728 mmHg)V = 10922.7632
V = 15.0 L
Answer:
Player B
Explanation:
I just did it and I got it right :)
Answer:
(i) specific heat
(ii) latent heat of vaporization
(iii) latent heat of fusion
Explanation:
i. Q = mcΔT; identify c.
Here, Q is heat, m is the mass, c is the specific heat and ΔT is the change in temperature.
The amount of heat required to raise the temperature of substance of mass 1 kg by 1 degree C is known as the specific heat.
ii. Q = mLvapor; identify Lvapor
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg liquid into 1 kg vapor at constant temperature.
iii. Q = mLfusion; identify Lfusion
Here, Q is the heat, m is the mass and L is the latent heat of fusion.
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg solid into 1 kg liquid at constant temperature.
Answer:
volume
Explanation:
The volume of the two samples of water will be different because volume is the amount of space occupied by a body. It is dependent on the amount of materials it contains.
- The 50g sample will have a higher volume compared to the 10g sample.
- The boiling point and density are intensive properties and do not depend on the amount of matter present.
- Since both samples are from the same source, they will have the same color.
you can learn who's blood it is, you can also see the blood patterns and how the crime maybe happened.