The equation of this sinusoidal function is either
f(x) = a sin(bx) + c
or
f(x) = a cos(bx) + c
Either way, the plot of f9x) has amplitude a, period 2π/b, and midline y = c.
If the period is π/2, then
2π/b = π/2 ⇒ b = 4
If the maximum value is 10 and the minimum value is -4, then
-4 ≤ a sin(4x) + c ≤ 10
-4 - c ≤ a sin(4x) ≤ 10 - c
-(4 + c)/a ≤ sin(4x) ≤ (10 - c)/a
Recall that sin(x) is bounded between -1 and 1. So we must have
-(4 + c)/a = -1 ⇒ a = c + 4
(10 - c)/a = 1 ⇒ a = -c + 10
Combining these equations and eliminating either variable gives
a + a = (c + 4) + (-c + 10) ⇒ 2a = 14 ⇒ a = 7
a - a = (c + 4) - (-c + 10) ⇒ 0 = 2c - 6 ⇒ c = 3
Finally, we have either
f(x) = a sin(bx) + c ⇒ f(0) = c = 3
or
f(x) = a cos(bx) + c ⇒ f(0) = a + c = 3
but the cosine case is impossible since a = 7.
So, the given function has equation
f(x) = 7 sin(4x) + 3
D. The slope is the same between any two points because it is linear.
Answer:
6%
Step-by-step explanation:
Interest = Principal x Rate x Time (in years)
30 = 500r
r = 3/50 or 6/100 which is 6%
Answer:
88
Step-by-step explanation:
From the question:
The average of 10 numbers is 85.
We have to find the total sum for the 10 numbers
Hence: 10 × 85 = 850
If the numbers 70 and 76 are removed from the set of numbers.
This means 10 number is reduced by 2
= 10 - 2 = 8
The total sum of the 8 numbers is
= 850 - (70 + 76)
= 850 - 146
= 704
The average of the remaining numbers is calculated as:
Sum of the 8 numbers/8
= 704/8
= 88.
Therefore, the sum of the remaining numbers is 88