To solve this problem it is necessary to apply the concepts related to the conservation of the Gravitational Force and the centripetal force by equilibrium,
Where,
m = Mass of spacecraft
M = Mass of Earth
r = Radius (Orbit)
G = Gravitational Universal Music
v = Velocity
Re-arrange to find the velocity
PART A ) The radius of the spacecraft's orbit is 2 times the radius of the earth, that is, considering the center of the earth, the spacecraft is 3 times at that distance. Replacing then,
From the speed it is possible to use find the formula, so
Therefore the orbital period of the spacecraft is 2 hours and 24 minutes.
PART B) To find the kinetic energy we simply apply the definition of kinetic energy on the ship, which is
Therefore the kinetic energy of the Spacecraft is 1.04 Gigajules.
Answer:
Distance =60m, Time = 6s, Speed = ?
Speed = distance/time
= 60/6
=10m/s
Explanation:
Hope that this is helpful.
Have a nice day.
Answer:
3.735×10⁻⁶ N
Explanation:
From newton' s law of universal gravitation,
F = Gmm'/r² .............................. Equation 1
Where F = Gravitational force between the person and the refrigerator, m = mass of the person, m' = mass of the refrigerator, r = distance between the person and the refrigerator. G = gravitational universal constant.
Given: m = 70 kg, m' = 200 kg, r = 0.5 m
Constant: G = 6.67×10⁻¹¹ Nm²/kg².
F = (6.67×10⁻¹¹×70×200)/0.5²
F = 93380×10⁻¹¹/0.25
F = 373520×10⁻¹¹
F = 3.735×10⁻⁶ N
Hence the force between the person and the refrigerator = 3.735×10⁻⁶ N
Answer:
The speed of q₂ is
Explanation:
Given that,
Distance = 0.4 m apart
Suppose, A small metal sphere, carrying a net charge q₁ = −2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q₂ = −8μC and mass 1.50g, is projected toward q₁. When the two spheres are 0.800m apart, q₂ is moving toward q₁ with speed 20m/s.
We need to calculate the speed of q₂
Using conservation of energy
Put the value into the formula
Hence, The speed of q₂ is
Answer: Examples of conductors include metals, aqueous solutions of salts (i.e., ionic compounds dissolved in water), graphite, and the human body. Examples of insulators include plastics, Styrofoam, paper, rubber, glass and dry air.