'B' is the correct choice.
BUT ... the angle of incidence is not the angle between the light ray
and the mirror. It's the angle between the light ray and the NORMAL
to the mirror. The 'normal' is the line that's perpendicular to the mirror.
Answer:
1.06 metres per second squared
Explanation:
since friction acts against foward force
20 N - 4 N = 16 N
use Newtons 2nd law F=ma Solve for a:
a= F÷m
= 16 ÷ 15
= 1.06 metres per second squared
I think fission chain reaction is the correct answer.
Answer:
31.905 ft/s²
Explanation:
Given that
Mass of the pilot, m = 120 lb
Weight of the pilot, w = 119 lbf
Acceleration due to gravity, g = 32.05 ft/s²
Local acceleration of gravity of found by using the relation
Weight in lbf = Mass in lb * (local acceleration/32.174 lbft/s²)
119 = 120 * a/32. 174
119 * 32.174 = 120a
a = 3828.706 / 120
a = 31.905 ft/s²
Therefore, the local acceleration due to gravity at that elevation is 31.905 ft/s²
like just try and try you gut it just trust me I'm a Wuman and you a man