Answer:
P = 40.7kPa
Explanation:
To find the pressure on a surface 6 meter below you use the following formula, which takes into account the heights in which pressures are measured and also the density of the fluid and the gravitational acceleration:
(1)
P2: pressure for a height of -6 m = ?
P1: pressure for a height of -2 m = 1.5kPa = 1500 Pa
ρ: density of water = 1000kg/m^3
g: gravitational acceleration = 9.8 ms^2
y2: -6m
y1: -2m
(the height is measure from the water level, because of that, the heights are negative)
You solve the equation (1) for P1:
(2)
Next, you replace the values of all variables in equation (2):

hence, the pressure on a surface 6 m below the water level is 40.7kPa
Unmmm to eat so we don't die
Answer:
Since there is only one path for the charges to flow through, the current is the same through each resistor. The equivalent resistance of a set of resistors in a series connection is equal to the algebraic sum of the individual resistances.
Answer:
The speed of electron is
and the speed of proton is 2468.02 m/s.
Explanation:
Given that,
Electric field, E = 560 N/C
To find,
The speed of each particle (electrons and proton) 46.0 ns after being released.
Solution,
For electron,
The electric force is given by :


Let v is the speed of electron. It can be calculated using first equation of motion as :

u = 0 (at rest)



For proton,
The electric force is given by :


Let v is the speed of electron. It can be calculated using first equation of motion as :

u = 0 (at rest)



So, the speed of electron is
and the speed of proton is 2468.02 m/s. Therefore, this is the required solution.
The identity of the element is determined by the number of protons
in the nucleus of each atom.
If two atoms have the same number of protons in their nucleii
(nucleuses) but different numbers of neutrons, then they're both
atoms of the same element, but their atomic masses are different,
and they're called isotopes of the element.
In the picture, atoms 'A' and 'B' each have 3 protons in the nucleus,
so they're both atoms of Lithium. But the number of neutrons is
different, so 'A' and 'B' are different isotopes of Lithium.
Also in the picture, atoms 'C' and 'D' each have 4 protons in the
nucleus, so they're both atoms of Beryllium. But the number of
neutrons is different, so 'C' and 'D' are different isotopes of Beryllium.