<span>I think you're looking for "spectrum".</span>
Voltage = current * resistance
Voltage = 12 * 4
Voltage = 48V
Answer:
Object D
Explanation:
Use Newton's Second Law to determine the acceleration that each object has.
The force applied in both cases is 50 N, but the mass for object C and object D is different.
Let's start with object C first:
- F = ma
- 50 N = 10 kg · a
- 50 = 10a
- 5 = a
The acceleration object C undergoes is 5 m/s².
Now let's calculate object D next:
- F = ma
- 50 N = 2 kg * a
- 50 = 2a
- 25 = a
The acceleration object D undergoes is 25 m/s².
Object D has greater acceleration because it has a smaller mass. The object with a smaller mass will accelerate more in order to satisfy Newton's 2nd Law.
Given that,
Mass of trackler, m₁ = 100 kg
Speed of trackler, u₁ = 2.6 m/s
Mass of halfback, m₂ = 92 kg
Speed of halfback, u₂ = -5 m/s (direction is opposite)
To find,
Mutual speed immediately after the collision.
Solution,
The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :

So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.