Answer:
1610.7 g is the weigh for 4.64×10²⁴ atoms of Bi
Explanation:
Let's do the required conversions:
1 mol of atoms has 6.02×10²³ atoms
Bi → 1 mol of bismuth weighs 208.98 grams
Let's do the rules of three:
6.02×10²³ atoms are the amount of 1 mol of Bi
4.64×10²⁴ atoms are contained in (4.64×10²⁴ . 1) /6.02×10²³ = 7.71 moles
1 mol of Bi weighs 208.98 g
7.71 moles of Bi must weigh (7.71 . 208.98 ) /1 = 1610.7 g
Hi there I believe it’s 18 please let me know if I’m wrong :)
Answer:
the correct answer is option 'b': More than
Explanation:
The 2 situations are represented in the attached figures below
When an object is placed in air it is acted upon by force of gravity of earth which is measured as weight of the object.
While as when any object is submerged partially or completely in any fluid the fluid exerts a force in upward direction and this force is known as force of buoyancy and it's magnitude is given by Archimedes law as equal to the weight of the fluid that the body displaces, hence the effective force in the downward direction direction thus the apparent weight of the object in water decreases.
A because of the way it looks and how it works