The tangent looks good.
The curve is a bit crooked, at the 0.9 and 1.
But overall, cool graph.
The solution for the problem is:
1 Watt = 1 Joule per second
1 Watt*second = 1 Joule
a Kilowatt is 1,000 Watts
an hour is 60 seconds times 60 minutes or 3,600 seconds
a Kilowatt * hour is 1,000 Watts in 3,600 seconds
15 W*h = 15,000 Watt*hour = 15,000 Watt * 3,600 seconds = 54,000,000
Watt*second
54,000,000 Watt*second = ? Joules
54,000,000 Joules / second = 54,000,000 Watts
60,000 is 100 times as much as 600
The wedge and screw simple machines
Answer:
a) p₀ = 1.2 kg m / s, b) p_f = 1.2 kg m / s, c) θ = 12.36, d) v_{2f} = 1.278 m/s
Explanation:
a system formed by the two balls, which are isolated and the forces during the collision are internal, therefore the moment is conserved
a) the initial impulse is
p₀ = m v₁₀ + 0
p₀ = 0.6 2
p₀ = 1.2 kg m / s
b) as the system is isolated, the moment is conserved so
p_f = 1.2 kg m / s
we define a reference system where the x-axis coincides with the initial movement of the cue ball
we write the final moment for each axis
X axis
p₀ₓ = 1.2 kg m / s
p_{fx} = m v1f cos 20 + m v2f cos θ
p₀ = p_f
1.2 = 0.6 (-0.8) cos 20+ 0.6 v_{2f} cos θ
1.2482 = v_{2f} cos θ
Y axis
p_{oy} = 0
p_{fy} = m v_{1f} sin 20 + m v_{2f} cos θ
0 = 0.6 (-0.8) sin 20 + 0.6 v_{2f} sin θ
0.2736 = v_{2f} sin θ
we write our system of equations
0.2736 = v_{2f} sin θ
1.2482 = v_{2f} cos θ
divide to solve
0.219 = tan θ
θ = tan⁻¹ 0.21919
θ = 12.36
let's look for speed
0.2736 = v_{2f} sin θ
v_{2f} = 0.2736 / sin 12.36
v_{2f} = 1.278 m / s