1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
3 years ago
8

Need help anybody thanks

Physics
1 answer:
mars1129 [50]3 years ago
4 0
If there are no windows, then the illumination in the room depends
only on the room and what's in it, not on anything outside. 
The time of day has no effect.  The other things all do. 
You might be interested in
A car is traveling at a constant speed of 33 m/s on a highway. At the instant this car passes an entrance ramp, a second car ent
Paha777 [63]

Answer:

0.8712 m/s²

Explanation:

We are given;

Velocity of first car; v1 = 33 m/s

Distance; d = 2.5 km = 2500 m

Acceleration of first car; a1 = 0 m/s² (constant acceleration)

Velocity of second car; v2 = 0 m/s (since the second car starts from rest)

From Newton's equation of motion, we know that;

d = ut + ½at²

Thus,for first car, we have;

d = v1•t + ½(a1)t²

Plugging in the relevant values, we have;

d = 33t + 0

d = 33t

For second car, we have;

d = v2•t + ½(a2)•t²

Plugging in the relevant values, we have;

d = 0 + ½(a2)t²

d = ½(a2)t²

Since they meet at the next exit, then;

33t = ½(a2)t²

simplifying to get;

33 = ½(a2)t

Now, we also know that;

t = distance/speed = d/v1 = 2500/33

Thus;

33 = ½ × (a2) × (2500/33)

Rearranging, we have;

a2 = (33 × 33 × 2)/2500

a2 = 0.8712 m/s²

3 0
3 years ago
An intergalactic rock star bangs his drum every 1.50 s. A person on earth measures that the time between beats is 2.70 s. How fa
sineoko [7]

Answer:

v = 83.1 % of speed of light

Explanation:

given,

T_e is the earth time = 2.7 s

T_s is the ship time = 1.5 s

we know,

T_s = T_e \times \gamma

where c is the speed of light

v is the speed of the rock star moving

T_s = T_e\times \sqrt{1-\dfrac{v^2}{c^2}}

1.5= 2.7\times \sqrt{1-\dfrac{v^2}{c^2}}

\sqrt{1-\dfrac{v^2}{c^2}} =0.556

squaring both side

1-\dfrac{v^2}{c^2}=0.3086

v^2=0.6914c^2

v = 0.831 c

v = 83.1 % of speed of light

7 0
3 years ago
An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
3 years ago
How far does a car move when it travels 50 miles an hour for 4 hours?
Alex_Xolod [135]

Answer:

200 mph

Explanation:

50 times 4 equals 200

6 0
3 years ago
An object weighs 79.1 N in air. When it is suspended from a force scale and completely immersed in water the scale reads 21.8 N.
Free_Kalibri [48]

Answer:

(a). The density of the object is 1382 kg/m³.

(b). The density of the oil is 536.4 kg/m³.

Explanation:

Given that,

Weight in air = 79.1 N

Weight in water = 21.8 N

Weight in oil = 48.4 N

We need to calculate the volume of object

Using formula of buoyant force

F_{b}=W_{air}=W_{water}

F_{b}=79.1-21.8

F_{b}=57.3\ N

F_{b}=\rho g h

Put the value into the formula

57.3=1000\times V\times 9.8

V=\dfrac{57.3}{1000\times9.8}

V=5.84\times10^{-3}\ m^3

We need to calculate the density

Using formula of buoyant force

F_{b}=\rho Vg

79.1=\rho\times5.84\times10^{-3}\times9.8

\rho=\dfrac{79.1}{5.84\times10^{-3}\times9.8}

\rho=1382\ kg/m^3

The density of the object is 1382 kg/m³.

(b). We need to calculate the volume of object

Using formula of buoyant force

F_{b}=W_{air}=W_{oil}

F_{b}=79.1-48.4

F_{b}=30.7\ N

We need to calculate the density

Using formula of buoyant force

F_{b}=\rho_{oil} Vg

30.7=\rho_{oil}\times5.84\times10^{-3}\times9.8

\rho_{oil}=\dfrac{30.7}{5.84\times10^{-3}\times9.8}

\rho=536.4\ kg/m^3

The density of the oil is 536.4 kg/m³.

Hence, This is the required solution.

4 0
3 years ago
Other questions:
  • Check my math please? GPE and Power lab
    5·1 answer
  • A toxin that inhibits the production of gtp would interfere with the function of a signal transduction pathway that is initiated
    5·1 answer
  • Beginning at the NW corner of the intersection of Pine & 675, thence north 950 feet, thence west 380 feet, thence south 950
    11·2 answers
  • A 20-kg block is held at rest on the inclined slope by a peg. A 2-kg pendulum starts at rest in a horizontal position when it is
    7·1 answer
  • If an astronaut goes on a space walk outside the Space Station, she will quickly float away from the station unless she has a te
    7·1 answer
  • Help with these questions please?
    10·1 answer
  • Explain briefly where the energy come from when a liquid Rises against Gravity in a capillary tube​
    9·1 answer
  • Can someone please help, ty!!<br> (Will mark brainliest)
    15·1 answer
  • <img src="https://tex.z-dn.net/?f=what%20%5C%3A%20is%20%5C%3A%20the%20%5C%3A%20formula%20%5C%3A%20of%20%5C%3A%20pressure%20%5C%3
    13·2 answers
  • Which of the following
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!