Answer:

Explanation:
Project mass m=3.8 kg
Initial speed vi= 0m/s
Final speed vf= 9.3×10³ m/s
Force F=9.3×10⁵N
To find
Time t
Solution
From Newtons second law we know that
∑F=ma
Where m is mass
a is acceleration
We can write this equation as
∑F=m(Δv/Δt)

Rearrange this equation to find time t
So

Substitute the given values
no BECQUSE POSUM BROOB SHSHSJ
Answer:
Both speed and velocity are changing.
Explanation:
They are both going up so both are changing
I’m guessing it’s the last one, trough
Answer:
923.44N
Explanation:
Obviously Fn cannot equal Fg since the elevator is moving up
Where Fn is the force read on the scale
Fg is gravitational force=mg=77.6 x 9.8=760.48N
So we use this equation:
Fnet = Fn - Fg
ma = Fn - mg
77.6 x 2.1 = Fn – 760.48
162.96N = Fn – 760.48N
923.44 N = Fn
The answer is 923.44 N