Answer:
Closest to the dog.
Explanation:
Sounds are louder the closer you are to them.
Answer:
Force that acted on the body was F = 13 N
Explanation:
If once accelerated, the body covers 60 meters in 6 seconds, then its velocity is 60/6 m/s = 10 m/s
When the force was acting (for 10 seconds) the object accelerated from rest (initial velocity vi = 0) to 10 m/s (its final velocity). therefore we can use the kinematic equation for the velocity in an accelerated motion given by:

which in our case becomes;

and we can solve for the acceleration as:
a = 10/10 m/s^2 = 1 m/s^2
Therefore the force acting on the body, based on Newton's 2nd Law expression: F = m * a is:
F = 13 kg * 1 m/s^2 = 13 N
To solve this problem we will apply the principle of conservation of energy. For this purpose, potential energy is equivalent to kinetic energy, and this clearly depends on the position of the body. In turn, we also note that the height traveled is twice that of the rigid rod, therefore applying these concepts we will have





Therefore the minimum speed at the bottom is required to make the ball go over the top of the circle is 4.67m/s
Once energy from the Sun gets to Earth, several things can happen to it:
Energy can be scattered or absorbed by aerosols in the atmosphere. Aerosols are dust, soot, sulfates and nitric oxides. When aerosols absorb energy, the atmosphere becomes warmer. When aerosols scatter energy, the atmosphere is cooled.
Short wavelengths are absorbed by ozone in the stratosphere.
Clouds may act to either reflect energy out to space or absorb energy, trapping it in the atmosphere.
The land and water at Earth's surface may act to either reflect energy or absorb it. Light colored surfaces are more likely to reflect sunlight, while dark surfaces typically absorb the energy, warming the planet.
Albedo is the percentage of the Sun's energy that is reflected back by a surface. Light colored surfaces like ice have a high albedo, while dark colored surfaces tend to have a lower albedo. The buildings and pavement in cities have such a low albedo that cities have been called "heat islands" because they absorb so much energy that they warm up.