My best guess has to be 1:3
Answer:
Explanation:
<em>Endothermi</em>c processes absorb energy. The final state contains more energy than the initial state.
Since ice absorbs heat energy <em>in the process of completely melting</em> this is an <em>endothermic</em> process.
The process involves two stages: 1) heating the ice up to the melting point, which is 0ºC, and 2) melting the ice.
1. Heating the ice from -15ºC to 0ºC
a) Formula: Q = m×C×ΔT
- C = 2.108 kJ/kg.ºC (specific heat of ice)
b) Calculations:
- Q = m×C×ΔT = 1.6 kg × 2.108 kJ/kg.ºC × 15ºC = 50.592 kJ
2. Melting the ice at 0ºC
a) Formula: L = m × ΔHf
- ΔHf = 334 kJ/kg (latent heat of fussion)
b) Calculations
- L = m × ΔHf = 1.6 kg × 334 kJ/kg = 534.40 kJ
<u />
<u>2. Total heat</u>
<u />
- 50.592 kJ + 534.40 kJ = 584.992 kJ ≈ 590 kJ (rounded to 2 significant figures)
Answer:
3.8 g/mL
Explanation:
From the question given above, the following data were obtained:
Volume of Water = 60 mL
Volume of Water + Object = 73.5 mL
Mass of object = 51.3 g
Density of object =?
Next, we shall determine the volume of the object. This can be obtained as follow:
Volume of Water = 60 mL
Volume of Water + Object = 73.5 mL
Volume of object =?
Volume of object = (Volume of Water + Object) – (Volume of Water)
Volume of object = 73.5 – 60
Volume of object = 13.5 mL
Finally, we shall determine the density of the object as illustrated below:
Volume of object = 13.5 mL
Mass of object = 51.3 g
Density of object =?
Density = mass /volume
Density of object = 51.3 /13.5
Density of object = 3.8 g/mL
Thus, the density of the object is 3.8 g/mL