1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
15

A projectile is launched with an initial speed of 60.0 m/s at an angle of 30.0° above the horizontal. The projectile lands on a

hillside 4.00 s later. Neglect air friction. (a) What is the projectile’s velocity at the highest point of its trajectory? (b) What is the straight-line distance from where the projectile was launched to where it hits its target?

Physics
2 answers:
Maurinko [17]3 years ago
8 0
<h2>Answer:</h2>

(a) 51.96m/s

(b) 207.84m

<h2>Explanation:</h2>

Using one of the equations of motion as follows;

h = ut + \frac{1}{2} at²;

Where;

h = vertical/horizontal displacement of the body in motion;

u = initial velocity of the body in motion

t = time taken for the body to attain the displacement

a = acceleration of the body,

... the motion of the projectile can be resolved into horizontal and vertical components as follows;

(i) Vertical component

h_{y} = u_{y}t + \frac{1}{2} a_{y}t²;  ----------------(ii)

Where;

h_{y} = vertical displacement of the body in motion;

u_{y} = initial vertical velocity of the body in motion = usinθ [θ is the angle of projection of the body above the horizontal]

t = time taken for the body to attain the vertical displacement

a = acceleration of the body = g [acceleration on the vertical motion is due to gravity]

Substitute the value of u_{y} and a_{y} into equation (ii) as follows;

h_{y} = usinθt + \frac{1}{2} gt²;   ----------------------(iii)

(ii) Horizontal component

h_{x} = u_{x}t + \frac{1}{2} a_{x}t²;        -----------------(iv)

Where;

h_{x} = horizontal displacement of the body in motion;

u_{x} = initial horizontal velocity of the body in motion = ucosθ [θ is the angle of projection of the body above the horizontal]

t = time taken for the body to attain the horizontal displacement

a = acceleration of the body = 0 [acceleration on the vertical motion is zero due to constant velocity]

<em>Substitute the value of </em>u_{y}<em> and </em>a_{y}<em> into equation (iv) as follows;</em>

h_{x} = ucosθt + \frac{1}{2} (0)t²;

h_{x} = ucosθt;           ----------------------------(v)

(a) As a projectile goes up in the air, the velocity of its vertical component decreases. When the projectile attains its highest point of its trajectory, the vertical component of its velocity becomes zero. However, the horizontal component of the velocity of the projectile remains constant throughout the flight. Therefore, at the projectile's highest point in trajectory, its velocity (v) is given by only the horizontal component as follows;

v = u_{x} = ucosθ                ----------------(vi)

Where;

u = initial velocity of the projectile = 60.0m/s

θ is the angle of projection of the body above the horizontal = 30.0°

<em>Substitute these values into equation (vi) as follows;</em>

u_{x} = 60 x cos30.0°

u_{x} = 60 x 0.8660

u_{x} = 51.96 m/s

Therefore, the projectile’s velocity at the highest point of its trajectory is 51.96m/s

(b) The straight line distance (horizontal distance = h_{x}) from where the projectile was launched to where it hits its target is given by equation (v)

h_{x} = ucosθt  

=> h_{x} = u_{x}t      [since u_{x} =  u cos θ]                     --------------------(vii)

Where;

t = time taken for the motion = 4.00s

u_{x} = 51.96m/s  [as calculated above]

<em>Substitute these values into equation (vii) as follows;</em>

h_{x} = 51.96 x 4.00

h_{x} = 207.84m

Therefore, the straight-line distance from where the projectile was launched to where it hits its target is 207.84m

vodka [1.7K]3 years ago
3 0

Answer:

51.96 m/s^-1

Explanation:

a) see the attachment

b) As we know the velocity of the projectile has two component, horizontal velocity v_ox. and vertical velocity v_oy as shown in the figure. At the highest point of the trajectory, the projectile has only horizontal velocity and vertical velocity is zero. Therefore at the highest point of the trajectory, the velocity of the projectile will be  

v_ox=v_o*cosФ

       =60*cos (30)

      = 51.96 m/s^-1

You might be interested in
Which of the following descriptions apply to the Milky Way galaxy
xenn [34]
Where are the choices?
3 0
3 years ago
Read 2 more answers
There's more to motion than simply changing position. True Or False
prohojiy [21]

Answer: I think that it is False, if its wrong I am sorry.

Explanation:

8 0
2 years ago
Read 2 more answers
Calculate the momentum of a Lion of mass 130-kg and moving at a speed of 22.3 m/s [W]
Sunny_sXe [5.5K]

Answer:

<h2>289.9 kg.m/s</h2>

Explanation:

The momentum of an object can be found by using the formula

momentum = mass × velocity

From the question we have

momentum = 130 × 22.3

We have the final answer as

<h3>289.9 kg.m/s</h3>

Hope this helps you

3 0
3 years ago
an astronaut weighs 104 newtons on the moon where the strength of gravity is 1.6 newtons per kilogram what is her mass
Andreas93 [3]
M = W/g
mass (m)
weight (W) and strength of gravity (g)
Therefore the mass of the astronaut is 65 kilograms
7 0
3 years ago
What is the total force acting on the ball in the diagram? How would you describe its velocity?
KonstantinChe [14]

Answer:

Velocity formulae should be used in order to know the answer

8 0
3 years ago
Read 2 more answers
Other questions:
  • Exercise 2.4.6: Suppose you wish to measure the friction a mass of 0.1 kg experiences as it slides along a floor (you wish to fi
    6·1 answer
  • Imagine that you are able to go on a fishing trip that you have always wanted to. Your friend gets a bite that exerts a force of
    10·1 answer
  • . Find the average distan e between the ele tron and proton in the Hydrogen ground-state. Use: hri = ˆ[infinity] 0 dr rP(r) wher
    13·1 answer
  • As the temperature of the gas in a balloon decreases which occurs after
    9·1 answer
  • A spherical surface completely surrounds a collection of charges. Find the electric flux (with its sign) through the surface if
    9·1 answer
  • The method of heat transfer that takes place in liquids and gases is?<br> need the answer ASAP!!
    6·1 answer
  • Q. Tom and Zoe make a string telephone. They use two empty tin cans joined by a piece of string. Tom and Zoe are 5 m apart. Tom
    14·1 answer
  • Write two functions of kotokis​
    8·1 answer
  • A bromine atom has an atomic number of 35 and an atomic mass of 80.
    14·1 answer
  • Why do heavier objects roll down slopes faster than lighter objects? (Assuming they are the same shape)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!