1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
15

A projectile is launched with an initial speed of 60.0 m/s at an angle of 30.0° above the horizontal. The projectile lands on a

hillside 4.00 s later. Neglect air friction. (a) What is the projectile’s velocity at the highest point of its trajectory? (b) What is the straight-line distance from where the projectile was launched to where it hits its target?

Physics
2 answers:
Maurinko [17]3 years ago
8 0
<h2>Answer:</h2>

(a) 51.96m/s

(b) 207.84m

<h2>Explanation:</h2>

Using one of the equations of motion as follows;

h = ut + \frac{1}{2} at²;

Where;

h = vertical/horizontal displacement of the body in motion;

u = initial velocity of the body in motion

t = time taken for the body to attain the displacement

a = acceleration of the body,

... the motion of the projectile can be resolved into horizontal and vertical components as follows;

(i) Vertical component

h_{y} = u_{y}t + \frac{1}{2} a_{y}t²;  ----------------(ii)

Where;

h_{y} = vertical displacement of the body in motion;

u_{y} = initial vertical velocity of the body in motion = usinθ [θ is the angle of projection of the body above the horizontal]

t = time taken for the body to attain the vertical displacement

a = acceleration of the body = g [acceleration on the vertical motion is due to gravity]

Substitute the value of u_{y} and a_{y} into equation (ii) as follows;

h_{y} = usinθt + \frac{1}{2} gt²;   ----------------------(iii)

(ii) Horizontal component

h_{x} = u_{x}t + \frac{1}{2} a_{x}t²;        -----------------(iv)

Where;

h_{x} = horizontal displacement of the body in motion;

u_{x} = initial horizontal velocity of the body in motion = ucosθ [θ is the angle of projection of the body above the horizontal]

t = time taken for the body to attain the horizontal displacement

a = acceleration of the body = 0 [acceleration on the vertical motion is zero due to constant velocity]

<em>Substitute the value of </em>u_{y}<em> and </em>a_{y}<em> into equation (iv) as follows;</em>

h_{x} = ucosθt + \frac{1}{2} (0)t²;

h_{x} = ucosθt;           ----------------------------(v)

(a) As a projectile goes up in the air, the velocity of its vertical component decreases. When the projectile attains its highest point of its trajectory, the vertical component of its velocity becomes zero. However, the horizontal component of the velocity of the projectile remains constant throughout the flight. Therefore, at the projectile's highest point in trajectory, its velocity (v) is given by only the horizontal component as follows;

v = u_{x} = ucosθ                ----------------(vi)

Where;

u = initial velocity of the projectile = 60.0m/s

θ is the angle of projection of the body above the horizontal = 30.0°

<em>Substitute these values into equation (vi) as follows;</em>

u_{x} = 60 x cos30.0°

u_{x} = 60 x 0.8660

u_{x} = 51.96 m/s

Therefore, the projectile’s velocity at the highest point of its trajectory is 51.96m/s

(b) The straight line distance (horizontal distance = h_{x}) from where the projectile was launched to where it hits its target is given by equation (v)

h_{x} = ucosθt  

=> h_{x} = u_{x}t      [since u_{x} =  u cos θ]                     --------------------(vii)

Where;

t = time taken for the motion = 4.00s

u_{x} = 51.96m/s  [as calculated above]

<em>Substitute these values into equation (vii) as follows;</em>

h_{x} = 51.96 x 4.00

h_{x} = 207.84m

Therefore, the straight-line distance from where the projectile was launched to where it hits its target is 207.84m

vodka [1.7K]3 years ago
3 0

Answer:

51.96 m/s^-1

Explanation:

a) see the attachment

b) As we know the velocity of the projectile has two component, horizontal velocity v_ox. and vertical velocity v_oy as shown in the figure. At the highest point of the trajectory, the projectile has only horizontal velocity and vertical velocity is zero. Therefore at the highest point of the trajectory, the velocity of the projectile will be  

v_ox=v_o*cosФ

       =60*cos (30)

      = 51.96 m/s^-1

You might be interested in
A rocket is fired at a 45° angle, what is the direction of the horizontal velocity vector at the peak height?
Bess [88]

Answer:

B: Horizontally to the left

Explanation:

Horizontal velocity is always constant throughout the entire trajectory of the rocket and acts in the horizontal direction in which the rocket was launched. This is because gravity only acts in the downwards vertical direction.

So in order words at peak height, horizontal velocity is in the horizontal direction in which the rocket was launched.

So if it was to the left, then direction is left but if right, then direction is right.

Looking at the options, the most appropriate will be:

Horizontally to the left

7 0
2 years ago
A cylinder with a moving piston expands from an initial volume of 0.250 L against an external pressure of 2.00 atm. The expansio
Step2247 [10]

The final volume of the gas is 144.25 L

Explanation:

For an ideal gas kept at constant pressure, the work done by the gas on the surroundings is given by

W=p\Delta V = p(V_f - V_i)

where

p is the pressure of the gas

V_i is the initial volume

V_f is the final volume

For the gas in the cylinder in this problem,

p = 2.00 atm

V_i = 0.250 L

And we also know the work done,

W = 288 J

So we can solve the equation for V_f, the final volume:

V_f = V_i + \frac{W}{p}=0.250 + \frac{288}{2.00}=144.25 L

Learn more about ideal gases:

brainly.com/question/9321544

brainly.com/question/7316997

brainly.com/question/3658563

#LearnwithBrainly

7 0
2 years ago
Draw and label a picture or make a real life model of something to display conservation of energy. Make sure it is something tha
sweet-ann [11.9K]
The picture shows it has a real life something to display conservation of energy  with kinetic energy and potential energy. 


Five sentences are for potential and kinetic energy. Potential energy is to energy an object when it stores. Kinetic energy is something to motion. When the potential energy is slows down the potential energy it might be increases. As from the object when the speeds up and it is decreases to potential energy.

Kinetic energy is to calculated by KE= mass×velocity²/2 as a fraction.

Potential energy is to calculated by PE= mass×g×height.

And the another picture it has a <span>energy, kinetic energy, mechanical energy, conservation of energy.

</span>

6 0
3 years ago
Please help me asap ​
ddd [48]

Answer:

if I aint wrong it would 2nd one

8 0
2 years ago
How does distance from the equator affect the climate of an area?
AVprozaik [17]

Explanation :  

There are different factors that affect the climate of an area.The distance from the equator is one of them.

Equator is closest to the sun. The rays from the sun strikes mostly near equator and gets spread over the larger area. Hence, equators are much hot as compared to that of poles.

6 0
3 years ago
Other questions:
  • A vehicle in for repair has a burst upper radiator tank. Technician A says thermostat that was stuck in the open position could
    5·1 answer
  • If a projectile was launched at an angle of 13 degrees above the ground and hit its target 14.3 m away, what was the projectile'
    11·1 answer
  • You are driving at 90 km/h. How many meters are you covering per second?
    12·1 answer
  • 21. Which general statement does NOT apply to metals? (1 point)
    7·2 answers
  • An amusement park ride raises people high into the air, suspends them for a moment, and then drops them at a rate of free-fall a
    13·2 answers
  • A grating with 400 lines per mm is illuminated with light of wavelength 600.0 nm. a Determine the angles at which maxima are obs
    12·1 answer
  • The rocky surface of Earth, its atmosphere, its oceans, and all living things contain which of the following, which is also an e
    6·2 answers
  • A mass m on a spring with a spring constant k is in simple harmonic motion with a period T. If the same mass is hung from a spri
    9·1 answer
  • By how many times will the kinetic energy of a body increases if its speed is trippled? Show by calculation.​
    14·1 answer
  • I drew a doggy but ima show you guys the other ones tommorow cause im still drawing
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!