1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
15

A projectile is launched with an initial speed of 60.0 m/s at an angle of 30.0° above the horizontal. The projectile lands on a

hillside 4.00 s later. Neglect air friction. (a) What is the projectile’s velocity at the highest point of its trajectory? (b) What is the straight-line distance from where the projectile was launched to where it hits its target?

Physics
2 answers:
Maurinko [17]3 years ago
8 0
<h2>Answer:</h2>

(a) 51.96m/s

(b) 207.84m

<h2>Explanation:</h2>

Using one of the equations of motion as follows;

h = ut + \frac{1}{2} at²;

Where;

h = vertical/horizontal displacement of the body in motion;

u = initial velocity of the body in motion

t = time taken for the body to attain the displacement

a = acceleration of the body,

... the motion of the projectile can be resolved into horizontal and vertical components as follows;

(i) Vertical component

h_{y} = u_{y}t + \frac{1}{2} a_{y}t²;  ----------------(ii)

Where;

h_{y} = vertical displacement of the body in motion;

u_{y} = initial vertical velocity of the body in motion = usinθ [θ is the angle of projection of the body above the horizontal]

t = time taken for the body to attain the vertical displacement

a = acceleration of the body = g [acceleration on the vertical motion is due to gravity]

Substitute the value of u_{y} and a_{y} into equation (ii) as follows;

h_{y} = usinθt + \frac{1}{2} gt²;   ----------------------(iii)

(ii) Horizontal component

h_{x} = u_{x}t + \frac{1}{2} a_{x}t²;        -----------------(iv)

Where;

h_{x} = horizontal displacement of the body in motion;

u_{x} = initial horizontal velocity of the body in motion = ucosθ [θ is the angle of projection of the body above the horizontal]

t = time taken for the body to attain the horizontal displacement

a = acceleration of the body = 0 [acceleration on the vertical motion is zero due to constant velocity]

<em>Substitute the value of </em>u_{y}<em> and </em>a_{y}<em> into equation (iv) as follows;</em>

h_{x} = ucosθt + \frac{1}{2} (0)t²;

h_{x} = ucosθt;           ----------------------------(v)

(a) As a projectile goes up in the air, the velocity of its vertical component decreases. When the projectile attains its highest point of its trajectory, the vertical component of its velocity becomes zero. However, the horizontal component of the velocity of the projectile remains constant throughout the flight. Therefore, at the projectile's highest point in trajectory, its velocity (v) is given by only the horizontal component as follows;

v = u_{x} = ucosθ                ----------------(vi)

Where;

u = initial velocity of the projectile = 60.0m/s

θ is the angle of projection of the body above the horizontal = 30.0°

<em>Substitute these values into equation (vi) as follows;</em>

u_{x} = 60 x cos30.0°

u_{x} = 60 x 0.8660

u_{x} = 51.96 m/s

Therefore, the projectile’s velocity at the highest point of its trajectory is 51.96m/s

(b) The straight line distance (horizontal distance = h_{x}) from where the projectile was launched to where it hits its target is given by equation (v)

h_{x} = ucosθt  

=> h_{x} = u_{x}t      [since u_{x} =  u cos θ]                     --------------------(vii)

Where;

t = time taken for the motion = 4.00s

u_{x} = 51.96m/s  [as calculated above]

<em>Substitute these values into equation (vii) as follows;</em>

h_{x} = 51.96 x 4.00

h_{x} = 207.84m

Therefore, the straight-line distance from where the projectile was launched to where it hits its target is 207.84m

vodka [1.7K]3 years ago
3 0

Answer:

51.96 m/s^-1

Explanation:

a) see the attachment

b) As we know the velocity of the projectile has two component, horizontal velocity v_ox. and vertical velocity v_oy as shown in the figure. At the highest point of the trajectory, the projectile has only horizontal velocity and vertical velocity is zero. Therefore at the highest point of the trajectory, the velocity of the projectile will be  

v_ox=v_o*cosФ

       =60*cos (30)

      = 51.96 m/s^-1

You might be interested in
I need help in my physics class and show me how it’s done
Korolek [52]

If we have the angle and magnitude of a vector A we can find its Cartesian components using the following formula

A_x = |A|cos(\alpha)\\\\A_y = |A|sin(\alpha)

Where | A | is the magnitude of the vector and \alpha is the angle that it forms with the x axis in the opposite direction to the hands of the clock.

In this problem we know the value of Ax and Ay and we need the angle \alpha.

Vector A is in the 4th quadrant

So:

A_x = 6\\\\A_y = -6.5

So:

|A| = \sqrt{6^2 + (-6.5)^2}\\\\|A| = 8.846

So:

Ay = -6.5 = 8.846cos(\alpha)\\\\sin(\alpha) = \frac{-6.5}{8.846}\\\\sin(\alpha) = -0.7348\\\\\alpha = sin^{- 1}(- 0.7348)

\alpha = -47.28 ° +360° = 313 °

\alpha = 313 °

Option 4.

4 0
3 years ago
How does energy limit the number of trophic levels in an energy pyramid?
nadya68 [22]

Answer: The amount of energy at each trophic level decreases as it moves through an ecosystem. As little as 10 percent of the energy at any trophic level is transferred to the next level; the rest is lost largely through metabolic processes as heat.

Explanation:

6 0
3 years ago
Read 2 more answers
Which state of matter has a definite volume but a variable shape?
polet [3.4K]

i think thta the answers liquid


5 0
3 years ago
Newton’s Third Law:
olya-2409 [2.1K]

If one force acting in one direction is greater than the force acting in the opposite direction, the object will <u>move.</u>

<h3>What is Newton's third law of motion?</h3>

Newton's third law of motion state that every action has an equal and opposite reaction. It is an action-reaction principle. It stated that the force always exists in a pair.

Hence,if one force acting in one direction is greater than the force acting in the opposite direction, the object will <u>move.</u>

To learn more about Newton's third law of motion, refer to the link;

brainly.com/question/1077877

#SPJ1

5 0
2 years ago
A cheetah starts from rest and accelerated at 8.7 m/s^2 for 3s. How far did the cheetah go in that time
nika2105 [10]

Answer:

cheetah goes 52.2 m in that time.

Explanation:

4 0
3 years ago
Other questions:
  • Help needed in this
    6·1 answer
  • A2 kg block is accelerating at the rate of 5 m/s² while being acted on by two forces. One of the forces equals 30 N, 0°. What ar
    9·1 answer
  • NEED HELP FAST. If anybody is great with Geometry or Physical Science, PM me.
    9·1 answer
  • If energy is absorbed because chemical reaction is ______.
    14·1 answer
  • If the speed of a wave increases...
    5·1 answer
  • Which scenario did not include a chemical change?
    12·1 answer
  • What are the characteristics of stars on
    13·1 answer
  • A car travels first 30 km at a uniform speed of 20 km
    12·1 answer
  • Can someone please help me with this question... thank u ❤️​
    12·1 answer
  • A car travels around a 1 mile race track in 4 seconds. What is its average velocity?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!