A student plans a two-step synthesis of 1-ethyl-3-nitrobenzene from benzene. The first step is nitration of benzene to give nitr
obenzene, and the second step is a Friedel-Crafts alkylation using CH3CH2Cl and AlCl3. The plan is flawed because: A : When the alkyl halide interacts with AlCl3, the resulting carbocation can rearrange before it has a chance to react with the aromatic ring. B : Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation. C : The nitro group will direct the incoming alkyl group para position, rather than to the meta position. D : A blocking group is required to achieve this synthesis.
Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation.
Explanation:
The benzene ring in itself does not easily undergo electrophilic substitution reaction. Some groups activate or deactivate the benzene ring towards electrophilic substitution reactions.
-NO2 ia a highly deactivating substituent therefore, Friedel-Crafts alkylation of nitrobenzene does not take place under any conditions.
This reaction scheme is therefore flawed because Nitrobenzene is too deactivated (by the nitro group) to undergo a Friedel-Crafts alkylation.
The point at which the indicator changes color is called the endpoint. So the addition of an indicator to the analyte solution helps us to visually spot the equivalence point in an acid-base titration
The warm air over the land will rise throughout the day, causing low pressure at the surface. Over the water, high surface pressure will form because of the colder air. ... The wind will blow from the higher pressure over the water to lower pressure over the land causing the sea breeze.
The chemical formula of the precipitate is Fe(OH)₃
Explanation:
Fe(NO₃)₃ and K₂CO₃ are strong electrolytes and completely dissociate in water. Carbonate ions is a weak base and combine with water to form hydroxide ions (OH⁻), CO₃²⁻ + H₂O <----------------> HCO₃⁻ + OH⁻
Ferric, Fe (III), combines with these hydroxide ions to form insoluble precipitates. Fe(OH)₃ is only partially soluble i.e., it does not completely dissociate in water. When the solutions of Fe(NO₃)₃ and K₂CO₃ are mixed, Fe(OH)₃ precipitates out due to the strong electrostatic attraction between Fe (III) and hydroxide ions.