Answer:
221.17 kJ
Explanation: Note the heat of vaporization is in kJ/mol,then to determine the number of moles of water: divide the mass by 18. Then multiply the number of moles by the molar heat of vaporization of water.
N = 97.6 ÷ 18
Q=molar heat *moles
Q = (40.79) * (97.6 ÷ 18)
This is approximately 221.17 kJ
Answer:
Wavelenght is 4.53x10^-7m
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
114.92749 keV
Explanation:
r = Radius of trajectory
m = Mass of electron = 
B = Magnetic field = 0.044 T
q = Charge of electron = 
The centripetal force and the magnetic forces are conserved

Velocity of first electron

Velocity of second electron

Total kinetic energy is given by

Converting to eV


The energy of incident electron is 114.92749 keV
Jet stream<span>ˈjet ˈˌstrēm/</span>noun1.a narrow, variable band of very strong, predominantly westerly air currents encircling the globe several miles above the earth. There are typically two or three jet streams in each of the northern and southern hemispheres.
(credit to google)
Given:
u = 0, initial speed (sprinter starts from rest)
v = 11.5 m/s, final speed
s = 15 m, distance traveled to attain final speed.
Let
a = average acceleration,
t = time taken to attain final speed.
Then
v² = u² + 2as
or
(11.5 m/s)² = 2*(a m/s²)*(15 m)
a = 11.5²/(2*15) = 4.408 m/s²
Also
v = u +a t
or
(11.5 m/s) = (4.408 m/s²)*(t s)
t = 11.5/4.408 = 2.609 s
Answer:
The average acceleration is 4.41 m/s² (nearest hundredth).
The time required is 2.61 s (nearest hundredth).