Sunday, July 20, marked 45 years since the United States put the first two astronauts safely on the moon. The cost for the Mercury, Gemini and Apollo programs was more than $25 billion at the time more like $110 billion in today’s world. The ensuing U.S. space efforts have cost an additional $196 billion for the shuttle and $50 billion for the space station. NASA’s total inflation-adjusted costs have been more than $900 billion since its creation in 1958 through 2014 (more than $16 billion per year). Looking back, have we gotten our money’s worth from the investment?
IamSugarBee
A quadrilateral with only one pair of parallel sides.
<span>a small carpal bone in the base of the hand, articulating with the metacarpal of the index finger.
</span>
<span>law of conservation of </span>energy<span> is </span><span><span>states that energy of the universe remains constant cant be created nor destroyed and conserving energy is not using as much power as you was like trying to make power bill lower while law of conservation is constant </span> </span>
Answer:
Membrane potential
Explanation:
Membrane potential is describes the difference in electrical charge across a membrane.
The difference in potential between exterior and interior of the biological cell is known as Membrane potential.Generally it is denoted by millivolts like mV and varies from -80 V to -40 V.
So the answer is Membrane potential
A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds