Answer:
f = 91.1 Hz
Explanation:
As we know that it is given here that wavelength of sound in platinum is same as the wavelength of sound in air
so we can use the formula of wavelength in two mediums

now it is given that


frequency of sound in platinum is 750 Hz
now frequency of sound in air = f
now from above formula


Answer:
Explanation:
In Physics, force is defined as: The push or pull on an object with mass that causes it to change its velocity. Force is an external agent capable of changing the state of rest or motion of a particular body. It has a magnitude and a directionForce is an external agent capable of changing the state of rest or motion of a particular body. It has a magnitude and a direction. The direction towards which the force is applied is known as the direction of the force and the application of force is the point where force is applied.
The Force can be measured using a spring balance. The SI unit of force is Newton(N).
Using the equation v(avg)=distance/time
and the equation v=v(original)+a(t)
solve for acceleration
2600=0+a(12)
a=216.66666 m/s^2
Then, you use the equation
v^2=v(original)+2a*(change in x)
2600^2=2(216.666666)*change in x
6760000/2/216.666666 = 15600 meters which is the length of the race
Then using v(avg)=x/t
15600/12= 1300 m/s
Answer:
v=20m/S
p=-37.5kPa
Explanation:
Hello! This exercise should be resolved in the next two steps
1. Using the continuity equation that indicates that the flow entering the nozzle must be the same as the output, remember that the flow equation consists in multiplying the area by the speed
Q=VA
for he exitt
Q=flow=5m^3/s
A=area=0.25m^2
V=Speed
solving for V

velocity at the exit=20m/s
for entry

2.
To find the pressure we use the Bernoulli equation that states that the flow energy is conserved.

where
P=presure
α=9.810KN/m^3 specific weight for water
V=speed
g=gravity
solving for P1

the pressure at exit is -37.5kPa
The capacitive reactance is reduced by a factor of 2.
<h3>Calculation:</h3>
We know the capacitive reactance is given as,

where,
= capacitive reactance
f = frequency
C = capacitance
It is given that frequency is doubled, i.e.,
f' = 2f
To find,
=?




Therefore, the capacitive reactance is reduced by a factor of 2.
I understand the question you are looking for is this:
A capacitor is connected across an AC source. Suppose the frequency of the source is doubled. What happens to the capacitive reactant of the inductor?
- The capacitive reactance is doubled.
- The capacitive reactance is traduced by a factor of 4.
- The capacitive reactance remains constant.
- The capacitive reactance is quadrupled.
- The capacitive reactance is reduced by a factor of 2.
Learn more about capacitive reactance here:
brainly.com/question/23427243
#SPJ4