Answer:
[See Below]
Explanation:
I'd say 44 something. It's probably ml but I can't see what it says on the tube.
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
Rate law for the given 2nd order reaction is:
Rate = k[a]2
Given data:
rate constant k = 0.150 m-1s-1
initial concentration, [a] = 0.250 M
reaction time, t = 5.00 min = 5.00 min * 60 s/s = 300 s
To determine:
Concentration at time t = 300 s i.e. ![[a]_{t}](https://tex.z-dn.net/?f=%5Ba%5D_%7Bt%7D)
Calculations:
The second order rate equation is:
![1/[a]_{t} = kt +1/[a]](https://tex.z-dn.net/?f=1%2F%5Ba%5D_%7Bt%7D%20%3D%20kt%20%2B1%2F%5Ba%5D)
substituting for k,t and [a] we get:
1/[a]t = 0.150 M-1s-1 * 300 s + 1/[0.250]M
1/[a]t = 49 M-1
[a]t = 1/49 M-1 = 0.0204 M
Hence the concentration of 'a' after t = 5min is 0.020 M
Answer:
a.) 22.4 L Ne.
Explanation:
It is known that every 1.0 mol of any gas occupies 22.4 L.
For the options:
<em>It represents </em><em>1.0 mol of Ne.</em>
<em />
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 20 L.
The no. of moles of (20 L) Ar = (1.0 mol)(20 L)/(22.4 L) = 0.8929 mol.
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 2.24 L.
<em>The no. of moles of (2.24 L) Xe </em>= (1.0 mol)(2.24 L)/(22.4 L) = <em>0.1 mol.</em>
- So, the gas that has the largest number of moles at STP is: a.) 22.4 L Ne.