Answer:
Collisions between gas particles are elastic; there is no net gain or loss of kinetic energy.
Explanation:
When a gas is paced in a container, the molecules of the gas have little or no intermolecular interaction between them. There is a lot of space between the molecules of the gas.
The gas molecules move at very high speed and collide with each other and with the walls of container.
The collision of these particles with each other is perfectly elastic hence the kinetic energy of the colliding gas particles do not change.
Answer:
64.17 Moles of Au
Explanation:
(atoms and particles are the same)
3.85 x 10 ^25 x (1 mol
/6.02 x 10^23)
3.85 / 6 = .64166
.6416 x 10^2 = 64.166
If you round up the answer you will get 64.17
64.17 moles of Au
It should be increasing the rate of the forward reaction will cause a shift to the left because the external stress, which is the increase in rate, will cause the reaction to be unbalanced, and to reach equilibrium it needs to shift to the right.
Answer:
you know that they will be a displacement reaction that will form a barium salt:
Ba(NO3)2+ 2NaCl--> BaCl2 + 2NaNO3
So now that we have that formula and the molecular weight we can determine how much salt will be made. So here we convert the grams to moles
(42.3g Ba(NO3)2)*(1 mole/261.34g) = 0.16185 mol
In the molecular formula we know that 1 mole of Barium nitrate will create 1 mole of Barium chloride, so in this case (in a perfect world) you should get 0.16185 mole of barium chloride (208.23 g/mol) that we then have to convert to grams.
(0.16185 mol BaCl2) * ( 208.23 g/mol) = 33.7037 g of Barium Chloride (rounded to 3 significant digits = 33.7g)
Answer:
D. Lowering activation energy for the reaction
Explanation:
Catalysts increase the rate of a reaction without being used up. They do this by lowering the activation energy needed. With a catalyst, more collisions result in a reaction, so the rate of reaction increases.
Hope this helped :)