Answer:
0.6522 mol/L.
Explanation:
<em>Molarity is defined as the no. of moles of a solute per 1.0 L of the solution.</em>
<em />
M = (no. of moles of solute)/(V of the solution (L)).
<em>∴ M = (no. of moles of solute)/(V of the solution (L)) </em>= (1.5 mol)/(2.3 L) = <em>0.6522 mol/L.</em>
Answer:
Potential energy is energy due to an object's height above the ground.
Potential energy = mass x gravity x height
Kinetic energy is energy due to the motion of the object.
Kinetic energy = 1/2 x mass x velocity²
<span>Fe(NO3)2
The NO3 part is a poly-atomic ion with total charge -1.
This is because Fe has a +2 charge and two NO3's with a -1 charge will balance out to 0.
Most often we just make the assumption that Oxygen has a -2 oxidation number because it is very electro-negative.
So to find N, we just need an oxidation number that balances out with 3(-2) to get -1 (the total charge of the ion)</span>
When the charged balloon is brought near the wall, it repels some of the negatively charged electrons in that part of the wall. Therefore, that part of the wall is left repelled.
<u>Explanation</u>:
- Balloons don't stick to walls. However, if you rub the balloon on an appropriate piece of material such as clothing or a wall, electrons are pulled from the other material to the balloon.
- The balloon now as more electrons than normal and therefore has an overall negative charge. Two balloons like this will repel each other.
- The other material now has an overall positive charge. Because opposite charges attract, the balloon will now appear to stick to the other material. If you didn't rub the balloon first, it's charge would be neutral and it wouldn't stick to the wall.
Answer:
Se =[Ar] 3d¹⁰ 4s² 4p⁴
Explanation:
The noble gas notation is used for the shortest electronic configuration of other periodic table elements.
For example:
The atomic number of Argon is 18, and its electronic configuration is,
Ar₁₈ = 1s² 2s² 2p⁶ 3s² 3p⁶
The atomic number of selenium is 34, its electronic configuration is,
Se₃₄ = 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁴
By using the noble gas notation, electronic configuration of selenium can be written is shortest form.
Se =[Ar] 3d¹⁰ 4s² 4p⁴
This electronic configuration is also called abbreviated electronic configuration.