Answer:
48.51ms / 174.6 km/h
Explanation:
y = 1/2 x g x t^2 v = g x t
when y = 120m
120 = 1/2 x 9.8 x t^2
t^2 = 24.49
t = 4.95s
when t = 4.95s
v = 9.8 x 4.95
v = 48.51 m/s = 174.6 km/h
I'd say its realistic. But I don't really know that sry
Answer:
weightlessness, condition experienced while in free-fall, in which the effect of gravity is canceled by the inertial (e.g., centrifugal) force resulting from orbital flight. ... Excluding spaceflight, true weightlessness can be experienced only briefly, as in an airplane following a ballistic (i.e., parabolic) path.
<h2>Answer with Explanation </h2>
Dalton’s theory can be classified by the following hypotheses:
1) All material was formed of particles, unbreakable and strong construction segments.
2) All particles of a given component are indistinguishable in volume and characteristics
3) Compounds are determined by a mixture of two or more distinct kinds of atoms.
4) Chemical responses appeared in the rearrangement of the reacting atoms.
This theory was to explain all matter in terms of atoms and their characteristics, the law of conservation of volume and the law of constant composition.
Considering the unknown resistence as R and using the Ohm's First Law, we have:
The equivalent resistence is given by the resistor series with the lamp resistence.

If you notice any mistake in my english, please let me know, because i am not native.
To solve this problem it is necessary to use the concepts related to the Hall Effect and Drift velocity, that is, at the speed that an electron reaches due to a magnetic field.
The drift velocity is given by the equation:

Where
I = current
n = Number of free electrons
A = Cross-Section Area
q = charge of proton
Our values are given by,






The hall voltage is given by

Where
B= Magnetic field
n = number of free electrons
d = distance
e = charge of electron
Then using the formula and replacing,

