Cardiac, smooth, and skeletal. cardiac muscle cells are located in the walls of the heart and appear striated and are under involuntary control. smooth muscle fibers are located in walls of hollow visceral organs except the heart they also appear striated. skeleton muscle is found between bones and uses tendons to connect to the epimysium to the periosteum, or the outer covering of bone. skeletal muscle is shaped and adapted in many ways.
(please mark me brainliest!)
Answer:
m = B²qR² / 2 V
Explanation:
If v be the velocity after acceleration under potential difference of V
kinetic energy = loss of electric potential energy
1/2 m v² = Vq ,
v² = 2 Vq / m ----------------------- ( 1 )
In magnetic field , charged particle comes in circular motion in which magnetic force provides centripetal force
magnetic force = centripetal force
Bqv = mv² / R
v = BqR / m
v² = B²q²R² / m² ------------------------- (2)
from (1) and (2)
B²q²R² / m² = 2 Vq / m
m = B²q²R² / 2 Vq
m = B²qR² / 2 V
You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x).
Voltmeter is used to find the potential difference between two points.
We always connect it in parallel to the points where we need the potential difference.
Here in order to make the reading accurate we can increase the resistance of voltmeter so that it can not withdraw any current from the circuit.
Answer:
16.5 kwh and 59400 kJ.
Explanation:
kWh is a measure of energy that is equivalent to the power in kw times the number of hours the device worked.
In this case, it would be equal to:

1 kw also means 1kj of energy spent per second. With this, we calculate the amount of energy in kJ spent by the resistance:
