I believe the answer is C
Answer :
Example of polar covalent molecules H-O-H(water), ammonia
Explanation:
The presence of intermolecular Hydrogen bonding makes the boiling point of water unexpectedly high, and the polar covalent nature makes it dissolve polar solute/compound
a) The total pressure of the system is 1.79 atm
b) The mole fraction and partial pressure of hydrogen is 0.89 and 1.59 atm respectively
c) The mole fraction and the partial pressure of argon is 0.11 and 0.19 atm.
<h3>What is the total pressure?</h3>
We know tat we can be able to obtain the total pressure in the system by the use of the ideal gas equation. We would have from the equation;
PV = nRT
P = pressure
V = volume
n = Number of moles
R = gas constant
T = temperature
Number of moles of hydrogen = 14.2 g/2g = 7.1 moles
Number of moles of Argon = 36.7 g/40 g/mol
= 0.92 moles
Total number of moles = 7.1 moles + 0.92 moles = 8.02 moles
Then;
P = nRT/V
P = 8.02 * 0.082 * 273/100
P = 1.79 atm
Mole fraction of hydrogen = 7.1/8.02 = 0.89
Partial pressure of hydrogen = 0.89 * 1.79 atm
= 1.59 atm
Mole fraction of argon = 0.92 / 8.02
= 0.11
Partial pressure of argon = 0.11 * 1.79 atm
= 0.19 atm
Learn more about partial pressure:brainly.com/question/13199169
#SPJ1
The change in energy of the system : -63 J
<h3>Further explanation</h3>
Given
279 J work
216 J heat
Required
The change in energy
Solution
Laws of thermodynamics 1
ΔU=Q+W
Rules :
- receives heat, Q +
- releases heat, Q -
- work is done by a system, W -
- work is done on a system, W +
a gas work on the surrounding : W =-279 J
a gas absorb heat from surrounding : Q = +216 J
Internal energy :
= -279+216
= -63 J