The answer for the following problem is mentioned below.
- <u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules.</em></u>
Explanation:
Given:
mass of calcium phosphate ( ) = 125.3 grams
We know;
molar mass of calcium phosphate ( ) = (40×3) + 3 (31 +(4×16))
molar mass of calcium phosphate ( ) = 120 + 3(95)
molar mass of calcium phosphate ( ) = 120 +285 = 405 grams
<em>We also know;</em>
No of molecules at STP conditions() = 6.023 × 10^23 molecules
To solve:
no of molecules present in the sample(N)
We know;
N÷
=
N =(405×6.023 × 10^23) ÷ 125.3
N = 19.3 × 10^23 molecules
<u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules</em></u>
Answer:
A mole ratio is the ratio between the amounts in moles of any two compounds involved in a chemical reaction. ... The mole ratio may be determined by examining the coefficients in front of formulas in a balanced chemical equation. Also known as: The mole ratio is also called the mole-to-mole ratio.
B and c...will lose electron(s) in forming an Ion.
P is an Anion
b..Fe. and c...Pb form Cations (+) by losing electrons.
d. Se is an Anion.
Answer : The molecular weight of a substance is 157.3 g/mol
Explanation :
As we are given that 7 % by weight that means 7 grams of solute present in 100 grams of solution.
Mass of solute = 7 g
Mass of solution = 100 g
Mass of solvent = 100 - 7 = 93 g
Formula used :
where,
= change in freezing point
= temperature of pure water =
= temperature of solution =
= freezing point constant of water =
m = molality
Now put all the given values in this formula, we get
Therefore, the molecular weight of a substance is 157.3 g/mol
Answer:
1.14 M
Explanation:
Step 1: Calculate the moles corresponding to 317 g of calcium chloride (solute)
The molar mass of calcium chloride is 110.98 g/mol.
317 g CaCl₂ × 1 mol CaCl₂/110.98 g CaCl₂ = 2.86 mol CaCl₂
Step 2: Calculate the molarity of the solution
Molarity is equal to the moles of solute divided by the liters of solution.
M = moles of solute / liters of solution
M = 2.86 mol / 2.50 L = 1.14 mol/L = 1.14 M