Answer:
(C) Only if it starts moving
Explanation:
We know that work done is given by

So there are two case in which work done is zero
First case is that when force and displacement are perpendicular to each other
And other case is that when there is no displacement
So for work to be done there must have displacement, if there is no displacement then there is no work done
So option (c) will be the correct option
Answer:
-0.7 m/s
Explanation:
Initial velocity (u)= 2.5 m/s
Acceleleration (a)= -0.8 m/s^2
Time taken (t) = 4 seconds
Hence,
v=u+at [1st Equation of motion]
v=2.5+-0.8*4
v=2.5-3.2
v=-0.7 m/s
Note that the negative sign indicates that the ball has changed direction and rolls downwards with gravity
Oppositely charged objects form in induction but not in conduction.
Answer:
1.082 mm
Explanation:
From the question, we can see that we were given The following
Wavelength of the atoms, λ = 502 nm = 502*10^-9 m
Radius of the screen away from the double slit, r = 1.1 m
We know that Y(20) = 10.2 mm = 10.2*10^-3 m
d = (20 * R * λ) / Y(20)
d = (20 * 1.1 * 502*10^-9)/10.2*10^-3
d = 1.1*10^-5 / 10.2*10^-3
d = 1.082 mm
Therefore, we can say that the distance of separation between the two slits is 1.082 mm
Complete question :
NASA is concerned about the ability of a future lunar outpost to store the supplies necessary to support the astronauts. The supply storage area of the lunar outpost, where gravity is 1.63 m/s2, can only support 1 x 10^5 N. What is the maximum WEIGHT of supplies, as measured on EARTH, NASA should plan on sending to the lunar outpost
Answer:
601,220N
Explanation:
Given that:
Gravity at lunar outpost = 1.63m/s²
Acceleration due to gravity on earth = 9.8m/s²
Supported weight = 1 * 10^5 N
Maximum weight of supplies as measured on earth;
(Ratio of the gravities) * weight of supplies
(9.8m/s² / 1.63m/s²) * (1 * 10^5 N)
6.0122 * (1 * 10^5)
6.0122 * 10^5 N
= 601,220 N