Answer:
-490.7 K
Explanation:
Given:
[Ni^2+]= 0.4 M
[Pb^2+]=0.002 M
∆V= -0.012 V
VNi= -0.250V
VPb= -0.126V
F= 96500 C
R= 8.314 JK-1 mol-1
n= 2
From
T= -nF/R [∆V-(VNi-VPb)/ln [Pb2+]/[Ni2+]]
T= 2(96500)/8.314[ (-0.012) -(-0.250) - (-0.126))/ln[0.002]/[0.4]
T= 23213.856(0.112/(-5.298))
T= -490.7 K
Answer: A: high ionization energies; high electron affinitlies.
Explanation: Covalent bonds are basically about sharing of electrons between two atoms to achieve that stable structure. They are formed between two atoms when both have similar tendencies to attract electrons to themselves (i.e., when both atoms have identical or fairly similar ionization energies and electron affinities). Covalent bonding usually occurs between two non-metals.
For effective and proper bonding, the two atoms involved in the covalent bonding exercise should be small and hungry for electrons. This is to enable the nuclei of both atoms to effectively attract and hold the shared electron(s) in place; hence, the need for high ionization energies & high electron affinities for a more effective covalent bonding.
The amount of grams that are in 2.3 moles of N = 32.223 or 32/100
Because there are 14.01 grams per mile of nitrogen atoms.
So…
14.01 x 2.3= 32.223
Hope this helps :)