Answer:
a = -7.29 m / s²
Explanation:
For this exercise we must use Newton's second law,
F -W = m a
Force is electrical force
F = k q₁ q₂ / r²
k q₁ q₂ / r² -mg = m a
indicate that the charge of the two spheres is equal
q₁ = q₂ = q
a = (k q² / r² - m g) / m
a = k q² / m r² - g
Let's reduce the magnitudes to the SI system
m = 0.19 g (1kg / 1000 g) = 1.9 10⁻⁴ kg
q1 = q2 = q = -23.0 nC (1C / 10⁹ nC) = -23.0 10⁻⁹ C
r = 10.0 cm (1m / 100cm) = 0.1000 m
let's calculate
a = 9 10⁹ (23.0 10⁻⁹)² / (0.1000² 1.9 10⁻⁴) - 9.8
a = -7.29 m / s²
The negative sign indicates that the direction of this acceleration is downward
Answer: acceleration due to gravity of planet a would be twice that of planet b. Given that the radius are thesame.
Explanation:
Acceleration due to gravity is as a result of the gravitational force of attraction of a planet to its centre.
g = GM/r^2
Where;
g = acceleration due to gravity
G = gravitational constant
M = mass of planet
r = radius of planet
Given that the two planet have the same radius, if the mass of planet a is twice the mass of planet b the the acceleration due to gravity of planet a would be twice that of planet b, because acceleration due to gravity is directly proportional to the mass of the planet.
For electrical devices . . .
Power dissipated = (voltage) x (current) =
(12 V) x (3.0 A) = 36 watts .
1 watt means 1 joule per second
(36 joule/sec) x (60 sec/min) x (10 min) = 21,600 joules
The forces that make a passenger speed up, slow down, or
turn a curve are the same forces that have the same effect
on the driver and anybody else in the car.
-- Speeding up . . .
the back of the seat
friction between the car seat and the seat of your pants
-- Slowing down . . .
the seat belt
friction between the car seat and the seat of your pants
-- Turning away from a straight line . . .
the seat belt
friction between the car seat and the seat of your pants
the door, or whatever or whomever you're leaning against
The answer is evolution. When a specifies evolves over time they change and adapt to their environment.