<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
Answer:
Freezing point = 1.25
Explanation:
If we increase the concentration of the solution, the concentration of H+ does not change.
Convert 2.5% in to decimal
2.5% = 2.5 ÷100
= 0.025
The freezing point = 0.025 × 50
= 1.25
The enthalpy change of the reaction when sodium hydroxide and sulfuric acid react can be calculated using the mass of solution, temperature change, and specific heat of water.
The balanced chemical equation for the reaction can be represented as,

Given volume of the solution = 101.2 mL + 50.6 mL = 151.8 mL
Heat of the reaction, q =
Δ
m is mass of the solution = 151.8 mL * 
C is the specific heat of solution = 4.18 
ΔT is the temperature change = 
q = 
Moles of NaOH =
NaOH
Moles of
= 
Enthalpy of the reaction = 