Answer:
The correct approach will be the "Linguistic-relativity hypothesis".
Explanation:
- This theory can be defined as either the Hypothesis of Sapir-Whorf. This theory proposes whether our cognitive capabilities are influenced by languages as well as decide how we start behaving and communicate throughout society.
- Sapir Whorf explains these variations throughout the nature of human language throughout the manner a person understands the world.
Answer:
The correct option is e
Explanation:
Hydrogen bond is an intermolecular interaction/bonding that are formed between an electronegative atom (such as nitrogen, oxygen and fluorine) and a hydrogen atom. They are weak intermolecular bonds compared to covalent bonds but account for the high boiling point of water because of the strong hydrogen bond presence between the water molecules. Water molecules form hydrogen bonds between each other; since an oxygen atom (in a water molecule) has two lone pairs on it's outermost shell, it forms an hydrogen bond with two hydrogen atoms of other water molecule. Due to the fluidity of liquid water molecules, hydrogen bonds keep getting broken (although recreated/formed almost immediately), hence, individual hydrogen bonds in liquid water does not exist for long.
In the explanation above, it was stated that the strength of the hydrogen bond in water is the reason for it's high boiling point. The atoms in a water molecule are bent NOT linear hence the strength of hydrogen bond does not depend on the linearity of the atoms involved in the bond.
The fewer the carbon atoms, the closer it is to being a gas. The only one you have to check out is A which is hexane. You know that gasoline at the pumps has 8 carbons and its a liquid. So B and C are both not gases because they are above 8.
C6 (hexane) is a liquid at room temperature not a gas.
The answer is D. If there is a gas present, it must be C3
Answer:
Q = 3440Kj
Explanation:
Given data:
Mass of gold = 2kg
Latent heat of vaporization = 1720 Kj/Kg
Energy required to vaporize 2kg gold = ?
Solution:
Equation
Q= mLvap
It is given that heat required to vaporize the one kilogram gold is 1720 Kj thus, for 2 kg
by putting values,
Q= 2kg × 1720 Kj/Kg
Q = 3440Kj
Potassium metal + Chlorine Gas -------->
Potassium Chloride<span>
The chemical equation using symbols and formula is
<span>K (s) + </span></span><span><span><span><span>Cl</span>2</span> </span><span>(g) ---------> 2KCl (s)</span></span>