The grams of Fe₂O₃ that are formed is 47.68 g
<u><em>calculation</em></u>
Step 1: write the equation for reaction
4 Fe +3O₂ → 2 Fe₂O₃
Step 2: find the moles of Fe
moles = mass÷ molar mass
= 33.4 g÷55.8 g/mol =0.5986 moles
Step 3 : use the mole ratio to determine the moles of Fe₂O₃
That is from equation above Fe:Fe₂O₃ is 4:2 therefore the moles of Fe₂O₃ is = 0.5986 moles x 2/4 =0.2993 moles
Step 4 : find the mass of Fe₂O₃
mass = mass x molar mass
The molar mass of Fe₂O₃ = (55.8 x 2 +(15.9 x3) = 159.3 g/mol
mass is therefore = 0.2993 moles x 159.3 g/mol =47.68 g
Al +3CuCl--->AlCl3+3Cu , its balanced equation
Answer:
Heat transfer = 3564 Jolues
The same value
Explanation:
The heat of combustion is the heat released per 1 mole of substunce experimenting the combustion at standard conditions of pressure and temperature ( 1 atm, 298 K):
Qtransfer = - mol x ΔHºc Qtransfer
So look up in appropiate reference table ΔHºc and solve the problem:
ΔHºc = - 891 kJ/mol
Qtransfer = - (4 x 10³ mol x -891 kJ/mol ) = 3564 J
if the combustion were achieved with 100 % excess air, the result will still be the same. As long as the standard conditions are maintained, the heat of combustion remains constant. In fact in many cases the combustion is performed under excess oxygen to ensure complete combustion.