problem identification
hypothesis
experimentation
data collection and analysis
data interpretation
data presentation
conclusion
Answer:
The density of acetic acid at 30°C = 1.0354_g/mL
Explanation:
specific gravity of acetic acid = (Density of acetic acid at 30°C) ÷ (Density of water at 30°C)
Therefore, the density of acetic acid at 30°C = (Density of water at 30°C) × (Specific gravity of acetic acid at 30°C)
= 0.9956 g/mL × 1.040
= 1.0354_g/mL
Specific gravity, which is also known as relative density, is the ratio of the density of a substance to the density of a specified standard substance.
Generally the standard substance of to which other solid and liquid substances are compared is water which has a density of 1.0 kg per litre or 62.4 pounds/cubic foot at 4 °C (39.2 °F) while gases are normally compared with dry air, with a density of 1.29 grams/litre or 1.29 ounces/cubic foot under standard conditions of a temperature of 0 °C and one standard atmospheric pressure
The primary form of heat transfer taking place within the water bottle will be convection, which is the natural circulation of fluid due to density differences arising from temperature differences.
The second form is dependent on how the heating is taking place. If the bottle is out in sunlight, the form of heat transfer is radiation from the sun's rays. If heat is directly being applied to it, then the form is conduction, which occurs in solids and through direct contact.
A) Z + 4
In the actual atom, half of the nucleus would be protons and the other half neutrons, hence the 2z. The additional four in the expression must be neutrons because adding protons would change the element all together.