The law of conservation of energy states that in a closed or isolated system, the amount of energy remains constant because energy can neither be created or destroyed. It can only be transferred from one form into another. This applies to all forms of energy.
Friction occurs between two contacting surfaces. The coefficient of friction is very much dependent on the roughness of these surfaces. Some of the many ways in which the coefficient can be lessened or decreased are to lubricate the surface or make it shiny by eliminating the spikes which caused the roughness.
Answer:
Explanation:
Given that,
Mass of the heavier car m_1 = 1750 kg
Mass of the lighter car m_2 = 1350 kg
The speed of the lighter car just after collision can be represented as follows


b) the change in the combined kinetic energy of the two-car system during this collision

substitute the value in the equation above

Hence, the change in combine kinetic energy is -2534.78J
The centripetal acceleration a is 4.32
10^-4 m/s^2.
<u>Explanation:</u>
The speed is constant and computing the speed from the distance and time for one full lap.
Given, distance = 400 mm = 0.4 m, Time = 100 s.
Computing the v = 0.4 m / 100 s
v = 4
10^-3 m/s.
radius of the circular end r = 37 mm = 0.037 m.
centripetal acceleration a = v^2 / r
= (4
10^-3)^2 / 0.037
a = 4.32
10^-4 m/s^2.
Answer:
x = 6.94 m
Explanation:
For this exercise we can find the speed at the bottom of the ramp using energy conservation
Starting point. Higher
Em₀ = K + U = ½ m v₀² + m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
½ m v₀² + m g h = ½ m v²
v² = v₀² + 2 g h
Let's calculate
v = √(1.23² + 2 9.8 1.69)
v = 5.89 m / s
In the horizontal part we can use the relationship between work and the variation of kinetic energy
W = ΔK
-fr x = 0- ½ m v²
Newton's second law
N- W = 0
The equation for the friction is
fr = μ N
fr = μ m g
We replace
μ m g x = ½ m v²
x = v² / 2μ g
Let's calculate
x = 5.89² / (2 0.255 9.8)
x = 6.94 m