The number of atoms N = 5.8 x 10²¹
<h3>Further explanation</h3>
A mole is a unit of many particles (atoms, molecules, ions) where 1 mole is the number of particles contained in a substance that is the same amount as many atoms in 12 gr C-12
1 mole = 6.02.10²³ particles
mass of N in 0.82 g of NaNO₃ (MW NaNO₃: 85 g/mol) :

moles of N :

The number of atoms N :

Answer:
-484kJ
Explanation:
Carry out bond energy calculation
[6(C-H) + (C=O) +2(C-C)] - [(O-H) +7(C-H)+ (C-O) +2(C-C)]
Substitute the bond energy values = -484kJ
Energy conservation is the effort made to reduce the consumption of energy by using less of an energy service. This can be achieved either by using energy more efficiently or by reducing the amount of service used. Energy conservation is a part of the concept of Eco-sufficiency
Answer:
E) Two of the above statements are true.
Explanation:
The options are:
A) Before the solution is titrated with HCl it is pink and when the color changes from pink to colorless, the moles of H*(aq) equals the moles of OH"(aq) used in the hydrolysis of the neutralized aspirin. <em>TRUE. </em>Before the solution is titrated, there is an excess of NaOH (Basic solution, phenolphtalein is pink). Then, at equivalence point, after the addition of HCl, the pH is acidic and phenolphtalein is colorless.
B) Before the solution is titrated with HCl it is colorless and when the color changes from colorless to pink, the moles of H*(aq) equals the excess moles of OH(aq) added. <em>FALSE. </em>As was explained, before the titration, the solution is pink.
C) 25.0 mL of 0.100 M NaOH was added to the sample to hydrolyze the neutralized aspirin in the solution. The titration with HCl allows us to determine the moles of excess OH(aq) added. Once we determine the moles of excess OH(aq), we can determine moles of OH"(aq) used in the hydrolysis of the neutralized aspirin, which is equal to the moles of aspirin in the recrystallized aspirin. <em>TRUE. </em>Aspirin requires an excess of base (NaOH) for a complete dissolution (Hydrolysis). Then, we add H+ as HCl to know the excess moles of OH-. As we know the added moles of OH-, we can find the moles of OH that reacted = Moles of aspirin.
D) We can determine the moles of aspirin in the recrystallized aspirin by titrating with the 0.100 M NaOH to the neutralization point. The purpose of the hydrolysis of the neutralized aspirin and the back-titration with the 0.100 M HCl is to confirm the moles of aspirin in the recrystallized aspirin. <em>FALSE. </em>NaOH can be added directly unyil neutralization point because, initially, aspirin can't be dissolved completely
E) Two of the above statements are true. <em>TRUE</em>
<em></em>
Right option is:
<h3>E) Two of the above statements are true.</h3>
The name is Potassium bromide.