Although the data for the experiment was not provided, we can offer a generalized answer in that when performing an experiment to achieve absolute zero temperatures, the value will never match the exact value.
<h3 /><h3>What is absolute zero?</h3>
Absolute zero is the lower limit of temperature. It is considered the coldest possible temperature that can exist. However, any attempt to reach this temperature in a controlled environment has failed, <u>scientists do not think it is possible to recreate this </u><u>temperature</u><u>. </u>
Therefore, we can confirm that the value of the absolute zero experiments did not match the accepted value. If the hypothesis was that it would be difficult or impossible to achieve, then the data would support the hypothesis, otherwise, it would fail to do so.
In summary, absolute zero is a temperature that cannot be recreated in a lab, so the value in this experiment does not match the accepted value and there is <u>no further exploration </u>to be done on this matter.
To learn more about absolute zero visit:
brainly.com/question/79835?referrer=searchResults
To determine the relative atomic mass of thallium, we multiply the molar mass of the isotopes to their corresponding relative abundance. The molecular percentages should sum up to 1. In this case, we multiply 203 by 0.295 and 205 by 0.705 and add the answers of the two. The final atomic mass is 204.41 g/mol.
The empirical formula is the same as the molecular formula : C₁₀H₅O₂
<h3>Further explanation</h3>
Given
Molecular formula : C₁₀H₅O₂
Required
The empirical formula
Solution
The empirical formula (EF) is the smallest comparison of atoms of compound forming elements.
The molecular formula (MF) is a formula that shows the number of atomic elements that make up a compound.
(empirical formula) n = molecular formula
<em>(EF)n=MF
</em>
(EF)n = C₁₀H₅O₂
If we divide by the number of moles of Oxygen (the smallest) which is 2 then the moles of Hydrogen will be a decimal number (not whole), which is 2.5, then the empirical formula is the same as the molecular formula
B and E are the answers I would choose.
On the left side, you have 2 nitrogen. On the right, you only have one. So put a 2 in front of the NH3. That gives you balanced nitrogen.
After that step, you have 6 hydrogen (the coefficient x the subscript) on the right, so you need to get 6 on the left. You have 2 hydrogen (subscript). 6/2 = 3, so put a coefficient of 3 in front of the H2, and you’ll have 6 hydrogen.
Your balanced equation is N2 + 3H2 -> 2NH3
Please lmk if you have questions.
Answer:

Explanation:
The pressure is constant, so we can use Charles' Law to calculate the volume.

Data:
V₁ = 22.4 L; T₁ = 273.15 K
V₂ = ?; T₂ = 136.58 K
Calculations:
