Answer:
c.- How much of the reactants are needed and how much product will made.
Explanation:
The moles is the matter unit used in chemistry to simplify some calculations, instead of using grams. Also the moles are very useful because the chemical reaction can be balanced.
When a Chemical reaction is balanced, then it can be easily to calculate how many moles are necessary to add in a process to obtain a quantity of grams of a product.
Answer:
rats. that's all i know of Just about everything except the mother hen if they are natural hatch. Even when you incubate them there are threats. The healthy chicks will mob the weak ones, the older chicks (even by a day) will pick on the younger ones. Temperature extremes will threaten them as they need warm, humid conditions with gradual drops in surrounding temps in the brooder box. Early disease is sometimes a problem and all chicks should be started on medicated chick feed for the first few weeks to prevent several digestive diseases. Even the water dispenser can be a threat as newly hatched chicks will immerse themselves in an open water container so care should be taken to supply water in a self feeding covered dish.
Explanation:
Answer:
The answer to your question is 0.64 M
Explanation:
Data
Sucrose C₁₂H₂₂O₁₁ mass = 7.633 g
volume = 25 ml
Molarity = ?
Process
1.- Calculate the molar weight of Sucrose
C₁₂H₂₂O₁₁ = (12 x 12) +(22 x 1) + (11 x 16)
= 144 + 22 + 176
= 342 g
2.- Calculate the moles of sucrose
342 g ------------------ 1 mol
7.633 g --------------- x
x = (7.633 x 1) / 342
x = 0.0223 moles
3.- Calculate the molarity
Molarity = moles / volume (L)
Molarity = 0.0223 / 0.035
Molarity = 0.64
When a liquid releases enough energy<span>. the </span>liquid<span> freezes, changing to a solid.
Hope this answer helps! feel free to ask any additional questions :)</span>
Answer:The amount of product will be higher than the amount of substrate at equilibrium
Explanation:
Recall that the equilibrium constant K depends on the amounts of reactants and products present in the system at equilibrium.
Considering the equation; K = [X]/[Y], as the concentration of X increases above that of Y, the equilibrium constant K becomes very high, hence the answer above.