I think your answer is D. However I’m not 100% sure.
An ideal gas is defined as one in which all collisions between atoms or molecules are perfectly eleastic and in which there are no intermolecular attractive forces. One can visualize it as a collection of perfectly hard spheres which collide but which otherwise do not interact with each other.
Happy to help
Answer:
Its in the Explanation
Explanation:
Here's what I got.
Aluminium-27 is an isotope of aluminium characterized by the fact that is has a mass number equal to
27
.
Now, an atom's mass number tells you the total number of protons and of neutrons that atom has in its nucleus. Since you're dealing with an isotope of aluminum, it follows that this atom must have the exact same number of protons in its nucleus.
The number of protons an atom has in its nucleus is given by the atomic number. A quick looks in the periodic table will show that aluminum has an atomic number equal to
13
.
This means that any atom that is an isotope of aluminum will have
13
protons in its nucleus.
Since you're dealing with a neutral atom, the number of electrons that surround the nucleus must be equal to the number of protons found in the nucleus.
Therefore, the aluminium-27 isotope will have
13
electrons surrounding its nucleus.
Finally, use the known mass number to determine how many neutrons you have
mass number
=
no. of protons
+
no. of neutrons
no. of neutrons
=
27
−
13
=
14
Your welcome :)
Answer:
Density of the He atom = 12.69 g/cm³
Explanation:
From the information given:
Since 1 mole of an atom = 6.022x 10²³ atoms)
1 atom of He = 

The volume can be determined as folows:
since the diameter of the He atom is approximately 0.10 nm
the radius of the He =
= 0.05 nm
Converting it into cm, we have:


Assuming that it is a sphere, the volume of a sphere is
= 
= 
= 
Finally, the density can be calcuated by using the formula :


D = 12.69 g/cm³
Density of the He atom = 12.69 g/cm³
Answer:
This reactivity order reflects both the strength of the C–X bond, and the stability of X(–) as a leaving group, and leads to the general conclusion that alkyl iodides are the most reactive members of this functional class.