Phương trình hóa học: 2Mg+O2->2Mgo
Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
The heat required to raise the temperature of a certain mass of sample to a specific temperature change, we use the formula mCpΔT where m is mass, Cp is the specific heat of the substance and ΔT is the temperature change. In this case, we substitute and form 1.25 g x 0.057 cal/g C *20 C equal to 1.425 calories.
Answer:
option c
Explanation:
as catalyst increases the reaction while activation energy is inversely proportional to rate of reaction, so option c is correct