2H2 + O2 -> 2H20 is the balanced equation for the reaction of Hydrogen with Oxygen to form water so If you have 32g of O2 this is a simple Dimensional analysis problem 32g O2 x 36.03056g H20/31.9988g O2 this way the O2 cancels out and you are left with just the H2O so your raw answer would be 36.0319112, then if your instructor requires a significant figure answer that would be to 2 significant figures the information you were given 32g O2, so as above 36g or Water are produced. Just a different way to view and solve the problem with the balanced equation so you can see the way everything relates to everything else. the molar masses of O2 and H2O are simply found my adding up 2 Oxygens 15.9994g x2 = 31.9988g and H2O = 2(1.00794) + 15.9994 = 18.01258 but you then have to multiply that by 2 because the reaction states you get 2 mols in the reaction so that is where I came up with the 36.03056g for the solution. Hope this helps. Dimensional Analysis is and can be one of the best ways to solve these problems, because not always are you going to be dealing with 1:2 ratios.
Answer: a.polluted runoff into nearby ponds
Explanation:
Warmer objects have faster particles and higher temperatures. If two objects have the same mass, the object with the higher temperature has greater thermal energy. Temperature is measured with a thermometer.
When the amount of heat gained = the amount of heat loss
so, M*C*ΔTloses = M*C* ΔT gained
when here the water is gained heat as the Ti = 25°C and Tf= 28°C so it gains more heat.
∴( M * C * ΔT )W = (M*C*ΔT) Al
when Mw is the mass of water = 100 g
and C the specific heat capacity of water = 4.18
and ΔT the change in temperature for water= 28-25 = 3 ° C
and ΔT the change in temperature for Al = 100-28= 72°C
and M Al is the mass of Al block
C is the specific heat capacity of the block = 0.9
so by substitution:
100 g * 4.18*3 = M Al * 0.9*72
∴ the mass of Al block is = 100 g *4.18 / 0.9*72
= 19.35 g