<u>Answer:</u> The daughter nuclide formed by the beta decay of given isotope is 
<u>Explanation:</u>
Beta decay is defined as the process in which beta particle is emitted. In this process, a neutron gets converted to a proton and an electron.
The released beta particle is also known as electron.

We are given:
Parent isotope = 
The chemical equation for the beta decay process of
follows:

Hence, the daughter nuclide formed by the beta decay of given isotope is 
Answer:
Because CLEARLY, each mole of glucose, C6H12O6 contains 6⋅mol oxygen atoms.
Answer:
C. The balloon with CH4 has the same moles of gas molecules as the balloon with H2
Explanation:
Based on combined gas law, gases under the same pressure, temperature and volume have the same number of moles. With this information we can say the rigth statement is:
<h3>C. The balloon with CH4 has the same moles of gas molecules as the balloon with H2</h3>
Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.