Answer:
The bike would have more acceleration
Explanation:
Accourding to newtons first law a force is equal to its mass multiplied by its acceleration (f=ma) therefore an object with a higher mass compared to an object with a lower mass would experience less acceleration.
Eg.
F=50N
Motorbike M=200kg
F=ma
50=200 x a
50/200=a
0.25m/s/s =a
Bike M=35kg
F=ma
50=35 x a
50/35= a
1.43m/s/s=a
Answer: a) 11.76 m/s b) 7.056 m
Explanation:
The described situation is as follows:
An object is dropped from the top of a tower and when measuring the time it takes to reach the ground that turns out to be 0.02 minutes.
This situation is related to free fall, this also means we have constant acceleration, hence the equations we will use are:
(1)
(2)
Where:
Is the final velocity of the object
Is the initial velocity of the object (it was dropped)
is the acceleration due gravity
is the height of the tower
is the time it takes to the object to reach the ground
b) Begining with (1):
(3)
(4)
(5) This is the final velocity of the object
a) Substituting (5) in (2):
(6)
Clearing
:
(7)
(8) This is the height of the tower
Answer:
Energy required = 3169.34 Joules.
Explanation:
The quantity of energy (Q) required can be determined by;
Q = mcΔθ
Where: m is the mass, c is the specific heat and Δθ is the change in temperature.
But, m = 96.7 kg, c = 0.874 J/(kg
),
=
and
=
.
So that,
Q = mc(
-
)
= 96.7 x 0.874 x (
-
)
= 96.7 x 0.874 x 37.5
= 3169.3425
Q = 3169.34
= 3.2 KJ
The amount of energy required is 3169.34 Joules.
Answer:
If you push horizontally with a small force, static friction establishes an equal and opposite force that keeps the book at rest. As you push harder, the static friction force increases to match the force. Eventually maximum static friction force is exceeded and the book moves.
Explanation:
Answer:
v= 335 m/s
2∆t= 0.75 s
∆x= v.∆t → ∆x= 335×½×0.75 = 125.625 m