Answer:
Four covalent bonds.
Explanation:
Hello,
In this case, given the attached picture in which you can find the Lewis dot structure for metanal (formaldehyde) we can see two C-H bonds and two C-O bonds via a double bond, thus, we can compute the type of each bond given the electronegativities of hydrogen, carbon and oxygen which are 2.1, 2.5 and 3.5 respectively:

Thus, since both electronegativity difference are less 1.7 we infer that all of them are covalent, therefore, it has four covalent bonds, two C-H bonds and a double C-O bond.
Best regards-
Answer:
5 g
Explanation:
The heat required to vaporize ice is the sum of
i) Heat required to melt ice at 0°C
ii) Heat required to raise the temperature from 0°C to 100°C
iii) Heat required to vaporize water at 100°C
Thus;
H = nLfus + ncθ + nLvap
H= n(Lfus + cθ + Lvap)
Lfus = 6.01 kJ/mol
Lvap = 41 kJ/mol
c = 75.38
n =?
2100 = n(6.01 + 75.38(100) + 41)
n = 2100 KJ/7585.01 kJ/mol
n = 0.277 moles
Mass of water = number of moles * molar mass
Mass of water = 0.277 moles * 18 g/mol
Mass of water = 5 g
Answer:
The Correct IUPAC name is H3C - CH (CH3) - CH (C2H5) - (CH2)2 - CH3 Class 11
Explanation:
yes searched np is maybe right i not 100% sure i 50% is it right >:) tell if u got it right >:D
Answer:
2.14 moles of H₂O₂ are required
Explanation:
Given data:
Number of moles of H₂O₂ required = ?
Number of moles of N₂H₄ available = 1.07 mol
Solution:
Chemical equation:
N₂H₄ + 2H₂O₂ → N₂ + 4H₂O
now we will compare the moles of H₂O₂ and N₂H₄
N₂H₄ : H₂O₂
1 : 2
1.07 : 2×1.07 = 2.14 mol