Answer:
-767,2kJ
Explanation:
It is possible to sum enthalpies of half-reactions to obtain the enthalpy of a global reaction using Hess's law. For the reactions:
1) H₂(g) + ¹/₂O₂(g) ⟶ H₂O(g) ΔH₁= −241.8 kJ
2) X(s) + 2Cl₂(g) ⟶ XCl₄(s) ΔH₂= +361.7 kJ
3) ¹/₂H₂(g) + ¹/₂Cl₂(g) ⟶ HCl (g) ΔH₃= −92.3 kJ
4) X(s) + O₂(g) ⟶ XO₂(s) ΔH₄= − 607.9 kJ
5) H₂O(g) ⟶ H₂O(l) ΔH₅= − 44.0 kJ
The sum of (4) - (2) produce:
6) XCl₄(s) + O₂(g) ⟶ XO₂(s) + 2Cl₂(g) ΔH₆ = ΔH₄ - ΔH₂ = -969,6 kJ
(6) + 4×(3):
7) XCl₄(s) + 2H₂(g) + O₂(g) ⟶ XO₂(s) + 4HCl(g) ΔH₇ = ΔH₆ + 4ΔH₃= -1338,8 kJ
(7) - 2×(1):
8) XCl₄(s) + 2H₂O(g) ⟶ XO₂(s) + 4HCl(g) ΔH₈ = ΔH₇ - 2ΔH₁= -855,2kJ
(8) - 2×(5):
9) XCl₄(s) + 2H₂O(l) ⟶ XO₂(s) + 4HCl(g) ΔH₉ = ΔH₈ - 2ΔH₅= <em>-767,2kJ</em>
I hope it helps!
AH1 = m * c1 * AT1 calculate this for ice (-25C to 0C) AH2 = AHfus(1 mole)=6.01 kJ = 6010 J AH3 = m *c3 * AT3 calculat this for water (0C to 100C) AH4 = AHvap(1mole)=40.67 kJ = 40670 J AH5= m * c5 * AT5 calculate this for steam (100C to 125C)
Sum ---- AH1+AH2+AH3+AH4+AH5
Data m=18g (1mole water)
c1=specific heat ice= 2.09 J/g K c3=specific heat water= 4.18 J/g K c5=specific heat steam= 1.84 J/g K
AT = (Tend - Tinitial) as this is a difference between temperatures it doesn't matter the units Celsius or Kelvin. Kelvin (K)=Celsius (C)+273.15
AT1 = 0C - (-25C)= 25C= 273.15K - 248.15K= 25K AT3= 100C - 0C = 100C= 100K AT5= 125C - 100C= 25C=25K
D = M/V = 76g / 22ml = 3.4g/ml
Half ~ D = 38g / 11ml = 3.4g/ml
Even if the object you had was cut in half, it’s density would remain the same.
Given a mole each for iron and magnesium, the number of atoms of each element is equal. Iron has a greater mass due to its greater molecular weight. The correct statement among the choices is D.
<span>CO is the limiting reactant
( 25.0 x 3 = 75 moles of CO are required)
Moles Fe = 30.0 x 2 / 3 = 20.0
mass Fe = 20.0 x 55.847 g/mol=1117 g </span><span>
I'm just saying</span>