1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
9

Which trail is it? Answer!

Physics
2 answers:
Pepsi [2]3 years ago
4 0
Wouldn’t it be 1. resistance is high compared to the voltage and with less resistance, higher current
Julli [10]3 years ago
3 0
I think it may be 1 =3
You might be interested in
A particle with mass 1.81*10^-3kg and a charge of 1.22*10^-8C has, at a given instant, a velocity v= (3.0*10^4 m/s)j.
charle [14.2K]

Answer:

a = -0.33 m/s² k^

Direction: negative

Explanation:

From Newton's law of motion, we know that;

F = ma

Now, from magnetic fields, we know that;. F = qVB

Thus;

ma = qVB

Where;

m is mass

a is acceleration

q is charge

V is velocity

B is magnetic field

We are given;

m = 1.81 × 10^(−3) kg

q = 1.22 × 10 ^(−8) C

V = (3.00 × 10⁴ m/s) ȷ^.

B = (1.63T) ı^ + (0.980T) ȷ^

Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;

a = qVB/m

a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))

From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^

Thus;

a = -0.33 m/s² k^

7 0
2 years ago
When the displacement of a mass on a spring is 12 a the half of the amplitude, what fraction of the mechanical energy is kinetic
Sveta_85 [38]
You know that when the displacement is equal to the amplitude (A), the velocity is zero, which implies that the kinetic energy (KE) is zeero, so the total mechanical energy (ME) is the potential energy (PE).

And you know that the potential energy, PE, is [ 1/2 ] k (x^2)

Then, use x = A, to calculate the PE in the point where ME = PE.

ME = PE = [1/2] k (A)^2.

At half of the amplitude, x = A/2 => PE = [ 1/2] k (A/2)^2

=> PE = [1/4] { [1/2]k(A)^2 } = .[1/4] ME

So, if PE is 1/4 of ME, KE is 3/4 of ME.

And the answer is 3/4


7 0
3 years ago
Sound waves can travel through which mediums?
aksik [14]

Answer:

B. Solids, liquids, and gases.

Explanation:

I have no explanation.

5 0
2 years ago
A spherical shell with a net charge of 3Q surrounds a point charge of -q at the center of the shell. The charges on the inner an
aleksley [76]

Answer:

1) The charge on the outer shell is +4·Q

2) The charge on the inner shell is +Q

Explanation:

1) The given parameters of the spherical shell are;

The net charge on the spherical shell = 3·Q

The point charge surrounded by the spherical shell = -Q

Let 'x' represent the charge on the outer shell, and let 'y', represent the charge on the inner shell, we have;

The net charge, 3·Q = -q + x

∴ x = 3·Q + Q = 4·Q

The charge on the outer shell, x = 4·Q

2) The net charge in the shell is zero, therefore, the charge on the inner shell, 'y', is given as follows;

-Q + y = 0

∴ y = +Q

The charge on the inner shell, y = +Q

5 0
3 years ago
A 5.0-kg rock and a 3.0 × 10−4-kg pebble are held near the surface of the earth.(a)Determine the magnitude of the gravitational
a_sh-v [17]

Answer:

a). Determine the magnitude of the gravitational force exerted on each by the earth.

Rock: F = 49.06N

Pebble: F = 29.44N

(b)Calculate the magnitude of the acceleration of each object when released.

Rock: a =9.8m/s^{2}

Pebble:  a =9.8m/s^{2}

Explanation:

The universal law of gravitation is defined as:

F = G\frac{m1m2}{r^{2}}  (1)

Where G is the gravitational constant, m1 and m2 are the masses of the two objects and r is the distance between them.

<em>Case for the rock </em>m = 5.0 Kg<em>:</em>

m1 will be equal to the mass of the Earth m1 = 5.972×10^{24} Kg and since the rock and the pebble are held near the surface of the Earth, then, r will be equal to the radius of the Earth r = 6371000m.

F = (6.67x10^{-11}kg.m/s^{2}.m^{2}/kg^{2})\frac{(5.972x10^{24} Kg)(5.0 Kg)}{(6371000 m)^{2}}

F = 49.06N

Newton's second law can be used to know the acceleration.

F = ma

a =\frac{F}{m} (2)

a =\frac{(49.06 Kg.m/s^{2})}{(5.0 Kg)}

a =9.8m/s^{2}

<em>Case for the pebble </em>m = 3.0 Kg<em>:</em>

F = (6.67x10^{-11}kg.m/s^{2}.m^{2}/kg^{2})\frac{(5.972x10^{24} Kg)(3.0 Kg)}{(6371000 m)^{2}}

F = 29.44N

a =\frac{F}{m}

a =\frac{(29.44 Kg.m/s^{2})}{(3.0 Kg)}

a =9.8m/s^{2}

3 0
3 years ago
Read 2 more answers
Other questions:
  • in an experiment which the volume of dry sand is measured by the displacement of water, the sand was slightly wet to begin with.
    6·1 answer
  • An 97 kg climber climbs to the top of Mount Everest, which has a peak height of 8850 m above sea level. What is the climber’s po
    10·1 answer
  • A mass of 2000 kg. is raised 5.0 m in 10 seconds. What is the potential energy of the mass at this height?
    15·1 answer
  • A football is kicked into the air with a horizontal velocity of 20 m/s and a vertical velocity of 30 m/s what is the resultant v
    9·1 answer
  • A ball is thrown straight upward with a velocity of 24m/s How much time passes before the ball strikes the ground? Disregard air
    13·1 answer
  • Which of the following best describes this Image?
    5·2 answers
  • How many significant figures are in the measurement 230kg
    7·1 answer
  • Difference between output work and input work​
    14·1 answer
  • What causes lightning?​
    5·2 answers
  • 3. Twelve waves pass a dock in 3.60 If the waves are traveling at 19.5 m/s , what is the wavelength of the waves?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!