Answer:
6.32s
Explanation:
Given parameters:
Length of track and distance covered = 200m
Acceleration = 10m/s²
Unknown:
Time taken to cover the track = ?
Solution:
To solve this problem, we apply one of the motion equations as shown below:
S = ut +
at²
S is the distance covered
t is the time taken
a the acceleration
u is the initial velocity
The initial velocity of Superman is 0;
So;
S =
at²
200 =
x 10 x t²
200 = 5t²
t² = 40
t = 6.32s
Answer:
A) object moves 20 N [West] or -20 N [East]
B) object moves 6 N [South] or -6 N [North]
C) object moves 90 N [West] or -90 N [East]
D) object does not move and is at rest*
*Rest means 0
Why:
A)both forces from north and south that are pushing against the object neutralize each other. Assume that north is positive and south is negative: 20 [N] + (-20) [S] = 0
On West and east, you can see that west has a greater force. Assume that west is negative and east is positive: 50 [E] + (-70) [W] = -20 [E]
Answer:
Total displacement will be 47 meter
Total distance will be 83 meters
Explanation:
We have given that first the student go eastward towards bus stop 20 meters
But he realizes that she dropped his physics notebook and so h=she turns back along the same way up to 18 meters
So displacement = 20-18 = 2 meters
And he travel 45 meters in east along the bus stop so total displacement = 45+2 = 47 meters
Total distance traveled by the student = 20+18+45 = 83 meters
Answer:
4960 N
Explanation:
First, find the acceleration.
Given:
v₀ = 6.33 m/s
v = 2.38 m/s
Δx = 4.20 m
Find: a
v² = v₀² + 2aΔx
(2.38 m/s)² = (6.33 m/s)² + 2a (4.20 m)
a = -4.10 m/s²
Next, find the force.
F = ma
F = (1210 kg) (-4.10 m/s²)
F = -4960 N
The magnitude of the force is 4960 N.
Magnetic fields are an area around a magnetic material or a moving electric charge with which the force of magnet