Answer:
Convert your wavelength into meters. Divide the speed of light, ~300,000,000 m/s, by the wavelength in m. This gives you the wave's frequency
Explanation:
Answer:
<em>1.49 x </em>
<em></em>
<em></em>
Explanation:
Kepler's third law states that <em>The square of the orbital period of a planet is directly proportional to the cube of its orbit.</em>
Mathematically, this can be stated as
∝ 
<em>to remove the proportionality sign we introduce a constant</em>
= k
k = 
Where T is the orbital period,
and R is the orbit around the sun.
For mars,
T = 687 days
R = 2.279 x 
for mars, constant k will be
k =
= 3.987 x 
For Earth, orbital period T is 365 days, therefore
= 3.987 x
x 
= 3.34 x 
R =<em> 1.49 x </em>
<em></em>
Answer:
Assume I1 = Io * T1 transmission proportional to thickness
I2 = Io * T2 I is intensity of light absorbed (3/8 absorbed)
I1 / I2 = T1 / T2
T2 = T1 * (I2 / I1) = 2 * (2/3 / 3/8) = 2 * 16/9 = 32/9 thickness for 2/3 absorbed
Answer:
Explanation:
Laser angle with water surface is given by: Tan α = 1/2.0= 0.5/
α = 26.56°
Laser angle with Normal = 90 - 26.56 = 63.44 °
Assuming a red laser, refractive index in water is 1.331.
Angle of refraction in water is given by:
Ref Ind = Sin i / Sin r
1.331 = Sin 63.44 / Sin r
Sin r = 0.8945 / 1.331 = 0.6721
Angle r = 42.22°
For the path in water:
Tan 42.22 = x / 3.2
x = 2.9m where x is the lateral displacement of the laser ince it hits the water
So the goggles are 2.0 + 2.9 = 4.9 m from edge of pool