Answer: There are 7.4 moles of helium gas present in a 1.85 liter container at the same temperature and pressure.
Explanation:
Given:
= 2.25 L,
= 9.0 mol
= 1.85 L,
= ?
Formula used to calculate the moles of helium are as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that there are 7.4 moles of helium gas present in a 1.85 liter container at the same temperature and pressure.
Use the question marck Moles of CO2
The the giving = 0.624 mol O2
Find the CF faction = 1 mole= 32.00 of O2
O= 2x16.00= 32.00amu ( writte this in the cf fraction)
SET UP THE CHART
Always start with the giving
0.624 mol O2 / 1mol of CO2
___________ / _____________ = Cancel the queal ( O2)
/ 32.00c O2
/
/
Multiply the top and divide by the bottom
0.624 mol CO x 1mol CO2 = 0.624 divide by 32.00 O2 =0.0195
You should look at the giving number ( how many num u gor ever there)
Ur answer should have the same # as ur givin so
= 0.0195
= .0195 mol of CO2
initial volume of the argon sample = 5.93L according to Boyle's law
What is Boyle's law ?
Boyle's law, also known as Mariotte's law, is a relationship describing how a gas will compress and expand at a constant temperature. The pressure (p) of a given quantity of gas changes inversely with its volume (v) at constant temperature, according to this empirical connection, which was established by the physicist Robert Boyle in 1662. In equation form, this means that pv = k, a constant.
According to Boyle's law
P1/V1 = P2/V2
P1 = initial pressure
P2 = final pressure
V1 =initial volume
V2= final volume
V1 = P1*V2/P2
V1 = 2.32*18.3/7.16 = 5.93L
initial volume of the argon sample = 5.93L according to Boyle's law
To know about Boyle's law from the link
brainly.com/question/26040104
#SPJ4
This answer is based on the electron configuration.
And you can use Aufbau's rule to predict the atomic number of the next elements.
Radon, Rn is the element number 86.
Following Aufbau's rules, the electron configuration of Rn is: [Xe] 6s2 4f14 5d10 6p6. This means that you are suming 2 + 14 + 10 + 6 = 32 electrons with respect to the element Xe.
You can verity that the atomic number of Xe is 54, so when you add 32 you get 54 + 32 = 86, which is the atomic number of Rn.
Again, as per Aufbau's rules, the next element of the same group or period is when the 6 electrons of the 7p orbital are filled. For that, they have to pass 32 elements whose orbitals are:
7s2 5f14 6d10 7p6: count the electrons added: 2 + 14 + 10 + 6 = 32, and that is why the next element wil have atomic number 86 + 32 = 118.
Now, when you go for a new series, you find a new type of orbital, the g orbital, for which the model predict there are 18 electrons to fill.
So the next element of the group will have ; 2 + 18 + 14 + 10 + 6 = 50 electrons, which means that the atomic number of this, not yet discovered element, has atomic number 118 + 50 = 168.
By the way the element with atomic number 118 was already discovdered at its symbol is Og. You can search that information in internet.
Answers: 118 and 168