Write balanced molecular, ionic, and net ionic equations<span> (NIE) for each of the ... </span>3.Mg(OH)2(aq) +. 2HCl(aq). →. MgCl2(aq). +. 2H2O(l). Ionic Equation: Mg2+(aq). + ... 2-(aq). +. Ca2+(aq). →. Ca(C2O4)(s). 5. 2(NH4)3PO4(aq) +. 3Zn(NO3)2(aq) → ... 2-(aq<span>). →. MgCrO4(s). 9. </span>2FeCl3(aq<span>). +. </span>3Mg<span>(s). →. </span>3MgCl2(aq<span>) +. </span>2Fe<span>(s).</span>
Answer:
F. 2NO + 02 —> 2NO
H. 4NH3 + 502 —> 4NO + 6H20
Explanation:
The law of conservation of mass states that matter can neither be created nor destroyed during a chemical reaction but can be convert from one form to another.
2NO + 02 —> 2NO
From the above, the total number of N on the left balance the total number on the right i.e 2 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 2 atoms of O on both side of the equation. This is certified by the law of conservation of mass.
4NH3 + 502 —> 4NO + 6H20
From the above, the total number of N on the left balance the total number on the right i.e 4 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 10 atoms of O on both side of the equation.
The total number of H on the left balance the total number on the right i.e 12 atoms of O on both side of the equation.
This is certified by the law of conservation of mass.
The rest equation did not conform to the law of conservation of mass as the atoms on the left side did not balance those on the right side
Answer:
The person’s kinetic energy is 1,025 J
Explanation:
Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.
Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and in a position of rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.
Kinetic energy is represented by the following formula:

where Ec is kinetic energy, which is measured in Joules (J), m is mass measured in kilograms (kg), and v is velocity measured in meters over seconds (m/s).
In this case:
- v= 5

Replacing:

Solving:
Ec= 1,025 J
<u><em>The person’s kinetic energy is 1,025 J</em></u>