Answer:
she should add solute to the solvent
Explanation:
Given data :
Mass of the sodium chloride, = 20.0 g
Concentration of the solution = 10 g/L
Volume of 20.0 g of sodium chloride = 7.50 mL
Now, from the concentration, we can conclude that for 10 g of sodium chloride volume of the solution is 1 L
thus, for 20 g of sodium chloride volume of the solution is 2 L or 2000 mL
also,
Volume of solution = Volume of solute(sodium chloride) + volume of solvent (water)
thus,
2000 mL = 7.5 mL + volume of solvent (water)
or
volume of water = (2000 - 7.5) mL
or
volume of water = 1992.5 mL
or
volume of water = 199.25 L ≈ 199 L
Answer:
35, I got you bro, i got you
a) we can answer the first part of this by recognizing the player rises 0.76m, reaches the apex of motion, and then falls back to the ground we can ask how
long it takes to fall 0.13 m from rest: dist = 1/2 gt^2 or t=sqrt[2d/g] t=0.175
s this is the time to fall from the top; it would take the same time to travel
upward the final 0.13 m, so the total time spent in the upper 0.15 m is 2x0.175
= 0.35s
b) there are a couple of ways of finding thetime it takes to travel the bottom 0.13m first way: we can use d=1/2gt^2 twice
to solve this problem the time it takes to fall the final 0.13 m is: time it
takes to fall 0.76 m - time it takes to fall 0.63 m t = sqrt[2d/g] = 0.399 s to
fall 0.76 m, and this equation yields it takes 0.359 s to fall 0.63 m, so it
takes 0.04 s to fall the final 0.13 m. The total time spent in the lower 0.13 m
is then twice this, or 0.08s